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Object recognition
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Machine learning is a general algorithm to build the function f(x)
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An Overview of Deep Learning Models "
e Convolutional Neural Networks
e Recurrent Neural Networks

* Transformers

* Mixture-of-Experts
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CNNs are Widely Used in Vision Tasks L5 el 8 F bk
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* Convolve the filter with the image: slide over the image spatially and
compute dot products

Center element of the kernel is placed over the (0 X 0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.
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Convolutional neural network
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* A sequence of convolutional layers, interspersed by pooling, normalization, and

activation functions
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 Convolutional Neural Networks
e Recurrent Neural Networks
* Transformers

* Mixture-of-Experts




S

Recurrent Neural Networks: Process Sequences

one to one
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Vanilla Neural Networks
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one to one one to many

image captioning
Image -> sequence of words
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one to one one to many many to one
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action prediction

sequence of video frames -> action A
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one to one one to many many to one many to many many to many
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Video captioning: sequence of

Video classification
video frames -> sequence of words on frames

Machine translation A
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' Recurrent Neural Networks

Recurrent

Neural
Networks

Arbitrary number of outputs

Key idea: RNNs have an
internal state that is
updated as a sequence is
processed

Arbitrary number of inputs
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* RNNs are designed to process sequences (texts, videos)

* RNNs are extremely useful when you want your model to have
internal states when a sequence is processed

e Commonly used in reinforcement learning (RL)
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* Problem: lack of parallelizability. Both forward and backward passes have
O(sequence length) unparallelizable operators

» A state cannot be computed before all previous states have been computed

* Inhibits training on very long sequences
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Output[2]
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 Convolutional Neural Networks
e Recurrent Neural Networks
* Transformers

* Mixture-of-Experts
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Attention: Enable Parallelism within a Sequence "R R

* |dea: treat each position’s representation as a query to access and
incorporate information from a set of values
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 Recurrent Neural Networks
* Transformers

* Mixture-of-Experts
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» Key idea: make each expert focus on predicting the right answer for a subset of
cases

e Actual: a kind of model-level sparsity.
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MoE Large Language Models
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Figure 2 | Illustration of the basic architecture of DeepSeek-V3. Following DeepSeek-V2, we
adopt MLA and DeepSeekMOE for efficient inference and economical training.
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Computational Graph Abstraction

* Nodes represents the computation (operation)

* Edge represents the data dependency between operations

f(x1,x2) = In(x;) + x1x, — sin(x;)

In
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input

Tensor[ (batch, 3072)]

v

inear Tensor is the central data format in deep
learning models

Tensor[(batch, 128)]
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Overview of ML System
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g ML Models

Automatic Differentiation

Graph Optimization

Parallelism / Distributed

Hardware Acceleration

|
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NVIDIA GPU HUAWEI NPU Mobile devices A
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Layer 2: Graph Optimization Lis el & 2 Iz
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o2 ML Models

Automatic Differentiation
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Discuss: Why does fuse kernels work?
NVIDIA GPU HUAWEINPU  Mobile devices




Layer 3: Parallelization
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How the model weights are split over cores
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Layer 4: Hardware Acceleration
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Automatic Differentiation

Graph Optimization

Parallelism / Distributed

Hardware Acceleration

NVIDIA GPU
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Mobile devices
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Leverage the computation capability of the
hardware backend

Thread block scheduler
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Cross-Layer Optimizations

g ML Models

Automatic Differentiation

Graph Optimization

Parallelism / Distributed

NVIDIA GPU

Hardware Acceleration
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Mobile devices
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= Kernel fusion for training torch.compile

Mega-Kernel

- omputation-Communication Overlap
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 Automatic Differentiation
Automatic Differentiation * General Hardware Acceleration
* CUDA Programming

Graph Optimization Ascend Programming

. - * ML Compilation
Parallelism / Distributed

* LLMs general optimizations

Hardware Acceleration * Distributed computing

* LLM pre-training
| N
| i

NVIDIA GPU HUAWEI NPU Mobile devices

* LLM serving / inference

* LLM post-training / RL
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