
System for Artificial Intelligence

Automatic Differentiation

Siyuan Feng

Shanghai Innovation Institute

O U T L I N E

01

02

2

Differentiation Methods

Reverse Mode Auto Diff

3

01
Differentiation Methods

Numerical Differentiation

4

Directly compute the partial gradient by definition

𝜕𝑓(𝜃)

𝜕𝜃𝑖
= lim

𝜖→0

𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓(𝜃)

𝜖

A more numerically accurate way to approximate the gradient

𝜕𝑓(𝜃)

𝜕𝜃𝑖
=
𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓(𝜃 − 𝜖𝑒𝑖)

2𝜖
+ 𝑜(𝜖2)

Suffer from numerical error, less efficient to compute

Numerical Gradient Checking

However, numerical differentiation is a powerful tool to verify an

implement of an automatic differentiation algorithm

𝛿𝑇∇𝜃𝑓 𝜃 =
𝑓 𝜃 + 𝜖𝛿 − 𝑓 𝜃 − 𝜖𝛿

2𝜖
+ 𝑜(𝜖2)

Pick 𝛿 from unit ball, check the above invariance.

5

Symbolic Differentiation

Use the model formula to derive gradients by sum, product and chain

rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕𝜃
=

•
𝜕 𝑓 𝜃 ∙𝑔 𝜃

𝜕𝜃
=

•
𝜕 𝑓 𝑔 𝜃

𝜕𝜃
=

6

Symbolic Differentiation

Use the model formula to derive gradients by sum, product and chain

rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕𝜃
=

𝜕 𝑓 𝜃

𝜕𝜃
+

𝜕 𝑔 𝜃

𝜕𝜃

•
𝜕 𝑓 𝜃 ∙𝑔 𝜃

𝜕𝜃
= 𝑔(𝜃)

𝜕 𝑓 𝜃

𝜕𝜃
+ 𝑓(𝜃)

𝜕 𝑔 𝜃

𝜕𝜃

•
𝜕 𝑓 𝑔 𝜃

𝜕𝜃
=

𝜕 𝑓 𝑔 𝜃

𝜕𝑔 𝜃

𝜕 𝑔 𝜃

𝜕𝜃

7

Symbolic Differentiation

Naively method can resultin wasted computation

Example:

𝑓 𝜃 =ෑ

𝑖=1

𝑛

𝜃𝑖 ,
𝑓 𝜃

𝜕𝜃𝑘
=ෑ

𝑖≠𝑘

𝑛

𝜃𝑖

Cost 𝑛(𝑛 − 2) multiplies to compute all partial gradients

8

Recap: Computational Graph

9

Example based on A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. JMLR 2018

𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑣1 𝑣3

𝑣2

𝑣4

𝑣6

𝑣7

𝑣2

𝑓 𝑥1, 𝑥2

𝑥1

𝑥2

×

ln +

sin

−

Each node represent an (intermediate) value in the
computation. Edges present input output relations.

Forward Mode Automatic Differentiation

10

𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑣1 𝑣3

𝑣5

𝑣4

𝑣6

𝑣7

𝑣2

𝑓 𝑥1, 𝑥2

𝑥1

𝑥2

×

ln +

sin

−

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = 0.693
𝑣4 = 𝑣1 × 𝑣2 = 10
𝑣5 = sin 𝑣2 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 11.652

Define ሶ𝑣𝑖 =
𝜕𝑣𝑖
𝜕𝑥1

We can then compute the ሶ𝑣𝑖 iteratively in the forward
topological order of the computational graph

ሶ𝑣1 = 1

ሶ𝑣2 = 0

ሶ𝑣3 =
ሶ𝑣1
𝑣1

= 0.5

ሶ𝑣4 = ሶ𝑣1𝑣2 + ሶ𝑣2𝑣1 = 5

ሶ𝑣5 = ሶ𝑣2 cos 𝑣2 = 0

ሶ𝑣6 = ሶ𝑣3 + ሶ𝑣4 = 5.5

ሶ𝑣7 = ሶ𝑣6 − ሶ𝑣5 = 5.5

𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥1
= ሶ𝑣7 = 5.5

Forward Mode Automatic Differentiation

11

𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑣1 𝑣3

𝑣5

𝑣4

𝑣6

𝑣7

𝑣2

𝑓 𝑥1, 𝑥2

𝑥1

𝑥2

×

ln +

sin

−

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = 0.693
𝑣4 = 𝑣1 × 𝑣2 = 10
𝑣5 = sin 𝑣2 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 11.652

Define ሷ𝑣𝑖 =
𝜕𝑣𝑖
𝜕𝑥2

ሷ𝑣1 = 0

ሷ𝑣2 = 1

ሷ𝑣3 =
ሷ𝑣1
𝑣1

= 0

ሷ𝑣4 = ሷ𝑣1𝑣2 + ሷ𝑣2𝑣1 = 2

ሷ𝑣5 = ሷ𝑣2 cos 𝑣2 = 0.284

ሷ𝑣6 = ሷ𝑣3 + ሷ𝑣4 = 2

ሷ𝑣7 = ሷ𝑣6 − ሷ𝑣5 = 1.716

𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥2
= ሷ𝑣7 = 1.716

Limitations of Forward Mode

• For 𝑓:ℝ𝑛 → ℝ𝑘, we need 𝑛 forward propagation passes to get the

gradient with respect to each input.

• However, we mostly care where 𝑘 = 1 and a large 𝑛.

• The time complexity of forward mode auto diff is 𝑂 𝑁2

12

13

02
Reverse Mode Auto Diff

Reverse Mode Automatic Differentiation

14

𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑣1 𝑣3

𝑣5

𝑣4

𝑣6

𝑣7

𝑣2

𝑓 𝑥1, 𝑥2

𝑥1

𝑥2

×

ln +

sin

−

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = 0.693
𝑣4 = 𝑣1 × 𝑣2 = 10
𝑣5 = sin 𝑣2 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 11.652

Define ҧ𝑣𝑖 =
𝜕𝑓 𝑥1,𝑥2

𝜕𝑣𝑖
, while forward mode is ሶ𝑣𝑖 =

𝜕𝑣𝑖
𝜕𝑥1

We can then compute the ҧ𝑣𝑖 iteratively in the reverse
topological order of the computational graph

ҧ𝑣7 =
𝜕𝑓 𝑥1, 𝑥2

𝜕𝑣7
= 1

ҧ𝑣6 = ҧ𝑣7 ∙
𝜕𝑣7
𝜕𝑣6

= ҧ𝑣7 ∙ 1 = 1

ҧ𝑣5 = ҧ𝑣7 ∙
𝜕𝑣7
𝜕𝑣5

= ҧ𝑣7 ∙ −1 = −1

ҧ𝑣4 = ҧ𝑣6 ∙
𝜕𝑣6
𝜕𝑣4

= ҧ𝑣6 ∙ 1 = 1

ҧ𝑣3 = ҧ𝑣6 ∙
𝜕𝑣6
𝜕𝑣3

= ҧ𝑣6 ∙ 1 = 1

ҧ𝑣2 = ҧ𝑣5 ∙
𝜕𝑣5
𝜕𝑣2

+ ҧ𝑣4 ∙
𝜕𝑣4
𝜕𝑣2

= ҧ𝑣5 ∙ cos 𝑣2 + ҧ𝑣4 ∙ 𝑣1 = 1.716

ҧ𝑣1 = ҧ𝑣4 ∙
𝜕𝑣4
𝜕𝑣1

+ ҧ𝑣3 ∙
𝜕𝑣3
𝜕𝑣1

= ҧ𝑣4 ∙ 𝑣2 + ҧ𝑣2 ∙
1

𝑣1
= 5.5Get all input gradients in one pass

Derivation for Branches

15

In this case, 𝑣1is being used in multiple pathways (i.e, 𝑣2 and 𝑣3)

𝑦 can be written in form of 𝑦 = 𝑓 𝑣2, 𝑣3 , hence

𝑣1 𝑣2

𝑣3

𝑣4 𝑦

ҧ𝑣1 =
𝜕𝑦

𝜕𝑣1
=
𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣1
=
𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣2
∙
𝜕𝑣2
𝜕𝑣1

+
𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣3
∙
𝜕𝑣3
𝜕𝑣1

= ҧ𝑣2 ∙
𝜕𝑣2
𝜕𝑣1

+ ҧ𝑣3 ∙
𝜕𝑣3
𝜕𝑣1

Define partial adjoint ҧ𝑣𝑖→𝑗 = ҧ𝑣𝑗 ∙
𝜕𝑣𝑗

𝜕𝑣𝑖
for each input output node pair 𝑖 and 𝑗, we have

ҧ𝑣𝑖 = ෍

𝑗∈𝑎𝑑𝑗𝑜𝑖𝑛𝑡𝑠(𝑖)

ҧ𝑣𝑖→𝑗

We can compute partial adjoints separately then sum them together

Reverse Automatic Differentiation Algorithm

16

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

node_to_grad: dictionary to record a list of partial
adjoints for each node

Sum up partial adjoints

Propagates partial adjoint to its input node

Reverse Mode AD by Extending Computational Graph

17

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 4

node_to_grad:{
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣4

}

Reverse Mode AD by Extending Computational Graph

18

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3→4ҧ𝑣2→4

×

×

𝑖 = 4

node_to_grad:{
2: [ҧ𝑣2→4]
3: [ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣4

}

Reverse Mode AD by Extending Computational Graph

19

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

𝑖 = 3

node_to_grad:{
2: [ҧ𝑣2→4]
3: [ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣3
ҧ𝑣4

}

Reverse Mode AD by Extending Computational Graph

20

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

𝑖 = 3

node_to_grad:{
2: [ҧ𝑣2→4, ҧ𝑣2→3]
3: [ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣3
ҧ𝑣4

}

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3

Reverse Mode AD by Extending Computational Graph

21

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 2

node_to_grad:{
2: [ҧ𝑣2→4, ҧ𝑣2→3]
3: [ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣2
ҧ𝑣3
ҧ𝑣4

}

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+

Reverse Mode AD by Extending Computational Graph

22

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 2

node_to_grad:{
1: [ҧ𝑣1→2]
2: [ҧ𝑣2→4, ҧ𝑣2→3]
3: [ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣2
ҧ𝑣3
ҧ𝑣4

}

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+

ҧ𝑣1→2
×

Reverse Mode AD by Extending Computational Graph

23

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 1

node_to_grad:{
1: [ҧ𝑣1→2]
2: [ҧ𝑣2→4, ҧ𝑣2→3]
3: [ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣1
ҧ𝑣2
ҧ𝑣3
ҧ𝑣4

}

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+

ҧ𝑣1
×

Compute in-place vs. Extend Computational Graph

24

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+

ҧ𝑣1
×

Reverse mode AutoDiff by
extending computational graph

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

Reverse mode AutoDiff by
computing in-place

• Run backward operations the same forward graph
• Used in earlier DL frameworks (caffe etc.)

• Construct separate graph nodes for adjoints.
• Used by modern deep learning frameworks.

Why Extend Computational Graph

25

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+

ҧ𝑣1
×

Reverse mode AutoDiff by
extending computational graph

• Construct separate graph nodes for adjoints.
• Used by modern deep learning frameworks.

• Unified execution runtime

• Native handling Gradient of Gradient

• The result of reverse mode AD is still a

computational graph

• We can extend that graph further by

composing more operations and run reverse

mode AD again on the gradient

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

26

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1: Automatic Differentiation
	Slide 2
	Slide 3
	Slide 4: Numerical Differentiation
	Slide 5: Numerical Gradient Checking
	Slide 6: Symbolic Differentiation
	Slide 7: Symbolic Differentiation
	Slide 8: Symbolic Differentiation
	Slide 9: Recap: Computational Graph
	Slide 10: Forward Mode Automatic Differentiation
	Slide 11: Forward Mode Automatic Differentiation
	Slide 12: Limitations of Forward Mode
	Slide 13
	Slide 14: Reverse Mode Automatic Differentiation
	Slide 15: Derivation for Branches
	Slide 16: Reverse Automatic Differentiation Algorithm
	Slide 17: Reverse Mode AD by Extending Computational Graph
	Slide 18: Reverse Mode AD by Extending Computational Graph
	Slide 19: Reverse Mode AD by Extending Computational Graph
	Slide 20: Reverse Mode AD by Extending Computational Graph
	Slide 21: Reverse Mode AD by Extending Computational Graph
	Slide 22: Reverse Mode AD by Extending Computational Graph
	Slide 23: Reverse Mode AD by Extending Computational Graph
	Slide 24: Compute in-place vs. Extend Computational Graph
	Slide 25: Why Extend Computational Graph
	Slide 26: Acknowledgement
	Slide 27: Thanks

