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Numerical Differentiation

Directly compute the partial gradient by definition

0(6) _ . f(0+ce) —f(8)
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A more numerically accurate way to approximate the gradient

0f(8) _ f(6+ee) — £(6 — ee)
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Suffer from numerical error, less efficient to compute

+ 0(€%)




v 4

Numerical Gradient Checking f L5 el 8 ZF
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However, numerical differentiation is a powerful tool to verify an
implement of an automatic differentiation algorithm

f(@+€d)—f(O—e€b)
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57Vof(6) = +0(e?)

Pick 6 from unit ball, check the above invariance.
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Use the model formula to derive gradients by sum, product and chain
rules
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Use the model formula to derive gradients by sum, product and chain
rules
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Naively method can resultin wasted computation

: o
ro=[ o =1 e

£

Example:

Cost n(n — 2) multiplies to compute all partial gradients
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Recap: Computational Graph g L B8 8 F Ik
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f(x1,x3) =In(x1) + x1x, — sin(x;)

In

Each node represent an (intermediate) value in the
computation. Edges present input output relations.
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Forward Mode Automatic Differentiation

f(x1,x3) =In(x1) + x1x, — sin(x;)

In
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X1 = 2

UV, =X, =05

v = In(vy) = 0.693
vy =11 XUy, =10

ve = sin(v,) = —0.959
Vg = V3 + v, = 10.693
V7 = Vg — Vg = 11.652

. . ov;
Define v; = a_xl
1

"

B e85k

Shanghai Innovation Institute

We can then compute the v; iteratively in the forward
topological order of the computational graph

1.71 ==

1.72 =0

. 7

V3 =—= 05
(%1

Vg = V1V + 01 =5

Ve = Uy cos(vy) =0

Vg = VU3 + Uy = 5.5

Uy = Vg — s = 5.5

0f (e x2) _
d0xq

7.77 == 55
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Forward Mode Automatic Differentiation

f(x1,%x2) = In(xq) + x1x, — sin(x;) Define v; = g_;::
In

X1 ﬁl =9
1.7.2 =1
f(xlixZ) . ﬁl

V3 =—~= 0
V1

X2

7.7.4 = 7.7.1172 + 1.7.2171 =2

Ve = ¥y cos(v,) = 0.284
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x1=2
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x2=5 U6=U3+U4=2
v = In(vy) = 0.693
vy =11 XUy, =10

ve = sin(v,) = —0.959
Vg = V3 + vy = 10.693 Of (x,%2) _ ., =1.716
v, = vg — vg = 11.652 0%,

Uy = ij6 — 1'7.5 = 1.716
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Limitations of Forward Mode s LiEo e
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* For f:R" - R* we need n forward propagation passes to get the
gradient with respect to each input.

 However, we mostly care where k = 1 and a large n.

* The time complexity of forward mode auto diff is O(N?)
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Reverse Mode Automatic Differentiation

f(x1,x3) =In(x1) + x1x, — sin(x;)

In

V=X =2

X, =5

v = In(vy) = 0.693
vy =11 XUy, =10
sin(v,) = —0.959
Vg = V3 + v, = 10.693
V7 = Vg — Vg = 11.652

<
N
Il

<
ul
Il

Get all input gradients in one pass

Define v; =

avi

af(xlixZ)
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6vi

, While forward mode is v; = —

0x1

We can then compute the v; iteratively in the reverse
topological order of the computational graph

_ af (x1, x7)
Uy = P =1
U7
__ 0v; _
176—177'6_1]6—177’1—1
. _ 0vy _
Vg = Uy a—vs—v7-—1——1
_ _ 0vg _
v4=176‘a_v4= 6.1:1
v
173:176 61]6:176.1:1
Gy =T av;+_ W _ 5 (vy) + 7, - vy = 1.716
Uy = Ut v, Uy sz_vs cos(v, Uy -1 = 1.
___ Ovy _ dvz _ _ 1
’Ul—'U4 6_171+v3 6—1]1—174.U2+v2-v—1_5.514 _\-
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Derivation for Branches > L& 8 8 % K
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In this case, v4is being used in multiple pathways (i.e, v, and v3)

y can be written in form of y = f(v,, v3) , hence

_ dy 0f(vp,v3)  0f (vy,v3) . v, 6f(v2,v3) 6v3 _ s v, ovz | vz
(3171_ avl B avz avl avg 0171 2’ avl 3 avl

ov;

Define partial adjoint v;_,; = v; o0, —L - for each input output node pair i and j, we have

Vi = ﬁi—)j
jeadjoints(i)

We can compute partial adjoints separately then sum them together
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def gradient(out):
node_to_grad: dictionary to record a list of partial

node_to_grad = {out: [1]} adjoints for each node

for i in reverse_topo_order(out):

v; = XjUij =sum(node_to_grad[i]) = <——— Sum up partial adjoints

for k in inputs][i]
— 6vi

compute vj_; = Vio"
k

append vUy_,; to node_to_grad[k] +<——— Propagates partial adjoint to its input node

AN

return adjoint of input Ui,y
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Reverse Mode AD by Extending Computational Graph "
def gradient(out):
node to grad = {out: [1]}

for i in reverse_topo _order(out):

B v; = XjUij =sum(node_to_grad[i]) @
for k in inputs[i] a
_ _ oy
compute Ty_; = v"a_:;k exp @
+
append v,_,; to node to grad[k] @

return adjoint of input Ui,y

=4 ©

node to grad:{ computed 7v;:{
4: [1] U4
} }
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Reverse Mode AD by Extending Computational Graph "

def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
U; = ) Ujj =sum(node_to_grad[i])

for k in inputs[i]

— — avi
compute vy = via—vk
B append 7,_,; to node_to_grad[k]
return adjoint of input Ui,y
=4
node to grad:{ computed 7v;:{
2: [Vp-4] Uy
3: [U354] }
4: [1]
}
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Reverse Mode AD by Extending Computational Graph "
def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
B v; = XjUij =sum(node_to_grad[i])
for k in inputs[i]

— — avi
compute vy = Vig
k

append v,_,; to node to grad[k]
return adjoint of input Ui,y

i =3

node to grad:{ computed 7v;:{
2: [Vyoa] U3
3: [U354] Uy
4: [1] }

}
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Reverse Mode AD by Extending Computational Graph "

def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
U; = ) Ujj =sum(node_to_grad[i])

for k in inputs[i]

— — avi
compute vy = via—vk
B append 7,_,; to node_to_grad[k]
return adjoint of input Ui,y
i=3
node to grad:{ computed 7v;:{
2: [V354,V253] U3
3t [U354] Uy
4: [1] }
}
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Reverse Mode AD by Extending Computational Graph f
def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
B v; = XjUij =sum(node_to_grad[i])
for k in inputs[i]

— — avi
compute vy = Vig
k

append v,_,; to node to grad[k]
return adjoint of input Ui,y

i =2

node to grad:{ computed 7v;:{
2: [Vy54,V253] U
3: [U354] U3
4: [1] Uy

} }
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def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
U; = ) Ujj =sum(node_to_grad[i])
for k in inputs[i]

compute v =7, 2
p Vi = Vi vy
B append 7,_,; to node_to_grad[k]
return adjoint of input Ui,y
[ =2
node to grad:{ computed 7v;:{
1: [721—>2]_ 722
2: [V354,V253] U3
3: [V354] Uy
4: [1] }
}
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Reverse Mode AD by Extending Computational Graph f
def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
B v; = XjUij =sum(node_to_grad[i])
for k in inputs[i]

— — avi
compute vy = Vig
k

append v,_,; to node to grad[k]
return adjoint of input Ui,y

i=1
node to grad:{ computed 7v;:{
1: [U152] Uy
2: [Uy54,V253] U
3: [773—>4] 173
4: [1] Uy
} }
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Compute in-place vs. Extend Computational Graph > - 8 8l 8 F b
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Reverse mode AutoDiff by Reverse mode AutoDiff by
computing in-place extending computational graph

* Run backward operations the same forward graph * Construct separate graph nodes for adjoints.
e Used in earlier DL frameworks (caffe etc.) * Used by modern deep learning frameworks.

V o
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Why Extend Computational Graph g LBERZIR
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Reverse mode AutoDiff by
extending computational graph

* Unified execution runtime

* Native handling Gradient of Gradient

* The result of reverse mode AD is still a

computational graph
* We can extend that graph further by
composing more operations and run reverse

mode AD again on the gradient

* Construct separate graph nodes for adjoints.

* Used by modern deep learning frameworks.
25
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