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01
Differentiation Methods



Numerical Differentiation

4

Directly compute the partial gradient by definition

𝜕𝑓(𝜃)

𝜕𝜃𝑖
= lim

𝜖→0

𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓(𝜃)

𝜖

A more numerically accurate way to approximate the gradient

𝜕𝑓(𝜃)

𝜕𝜃𝑖
=
𝑓 𝜃 + 𝜖𝑒𝑖 − 𝑓(𝜃 − 𝜖𝑒𝑖)

2𝜖
+ 𝑜(𝜖2)

Suffer from numerical error, less efficient to compute



Numerical Gradient Checking

However, numerical differentiation is a powerful tool to verify an

implement of an automatic differentiation algorithm

𝛿𝑇∇𝜃𝑓 𝜃 =
𝑓 𝜃 + 𝜖𝛿 − 𝑓 𝜃 − 𝜖𝛿

2𝜖
+ 𝑜(𝜖2)

Pick 𝛿 from unit ball, check the above invariance.
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Symbolic Differentiation

Use the model formula to derive gradients by sum, product and chain

rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕𝜃
=

•
𝜕 𝑓 𝜃 ∙𝑔 𝜃

𝜕𝜃
=

•
𝜕 𝑓 𝑔 𝜃

𝜕𝜃
=
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Symbolic Differentiation

Use the model formula to derive gradients by sum, product and chain

rules

•
𝜕 𝑓 𝜃 +𝑔 𝜃

𝜕𝜃
=

𝜕 𝑓 𝜃

𝜕𝜃
+

𝜕 𝑔 𝜃

𝜕𝜃

•
𝜕 𝑓 𝜃 ∙𝑔 𝜃

𝜕𝜃
= 𝑔(𝜃)

𝜕 𝑓 𝜃

𝜕𝜃
+ 𝑓(𝜃)

𝜕 𝑔 𝜃

𝜕𝜃

•
𝜕 𝑓 𝑔 𝜃

𝜕𝜃
=

𝜕 𝑓 𝑔 𝜃

𝜕𝑔 𝜃

𝜕 𝑔 𝜃

𝜕𝜃
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Symbolic Differentiation

Naively method can resultin wasted computation

Example:

𝑓 𝜃 =ෑ

𝑖=1

𝑛

𝜃𝑖 ,
𝑓 𝜃

𝜕𝜃𝑘
=ෑ

𝑖≠𝑘

𝑛

𝜃𝑖

Cost 𝑛(𝑛 − 2) multiplies to compute all partial gradients
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Recap: Computational Graph
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Example based on A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. JMLR 2018

𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑣1 𝑣3

𝑣2

𝑣4

𝑣6

𝑣7

𝑣2

𝑓 𝑥1, 𝑥2

𝑥1

𝑥2

×

ln +

sin

−

Each node represent an (intermediate) value in the 
computation. Edges present input output relations.



Forward Mode Automatic Differentiation
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𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑣1 𝑣3

𝑣5

𝑣4

𝑣6

𝑣7

𝑣2

𝑓 𝑥1, 𝑥2

𝑥1

𝑥2

×

ln +

sin

−

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = 0.693
𝑣4 = 𝑣1 × 𝑣2 = 10
𝑣5 = sin 𝑣2 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 11.652

Define ሶ𝑣𝑖 =
𝜕𝑣𝑖
𝜕𝑥1

We can then compute the ሶ𝑣𝑖 iteratively in the forward
topological order of the computational graph

ሶ𝑣1 = 1

ሶ𝑣2 = 0

ሶ𝑣3 =
ሶ𝑣1
𝑣1

= 0.5

ሶ𝑣4 = ሶ𝑣1𝑣2 + ሶ𝑣2𝑣1 = 5

ሶ𝑣5 = ሶ𝑣2 cos 𝑣2 = 0

ሶ𝑣6 = ሶ𝑣3 + ሶ𝑣4 = 5.5

ሶ𝑣7 = ሶ𝑣6 − ሶ𝑣5 = 5.5

𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥1
= ሶ𝑣7 = 5.5



Forward Mode Automatic Differentiation
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𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑣1 𝑣3

𝑣5

𝑣4

𝑣6

𝑣7

𝑣2

𝑓 𝑥1, 𝑥2

𝑥1

𝑥2

×

ln +

sin

−

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = 0.693
𝑣4 = 𝑣1 × 𝑣2 = 10
𝑣5 = sin 𝑣2 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 11.652

Define ሷ𝑣𝑖 =
𝜕𝑣𝑖
𝜕𝑥2

ሷ𝑣1 = 0

ሷ𝑣2 = 1

ሷ𝑣3 =
ሷ𝑣1
𝑣1

= 0

ሷ𝑣4 = ሷ𝑣1𝑣2 + ሷ𝑣2𝑣1 = 2

ሷ𝑣5 = ሷ𝑣2 cos 𝑣2 = 0.284

ሷ𝑣6 = ሷ𝑣3 + ሷ𝑣4 = 2

ሷ𝑣7 = ሷ𝑣6 − ሷ𝑣5 = 1.716

𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥2
= ሷ𝑣7 = 1.716



Limitations of Forward Mode

• For 𝑓:ℝ𝑛 → ℝ𝑘, we need 𝑛 forward propagation passes to get the

gradient with respect to each input.

• However, we mostly care where 𝑘 = 1 and a large 𝑛.

• The time complexity of forward mode auto diff is 𝑂 𝑁2
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Reverse Mode Auto Diff



Reverse Mode Automatic Differentiation
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𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 − sin 𝑥2

𝑣1 𝑣3

𝑣5

𝑣4

𝑣6

𝑣7

𝑣2

𝑓 𝑥1, 𝑥2

𝑥1

𝑥2

×

ln +

sin

−

𝑣1 = 𝑥1 = 2
𝑣2 = 𝑥2 = 5
𝑣3 = ln 𝑣1 = 0.693
𝑣4 = 𝑣1 × 𝑣2 = 10
𝑣5 = sin 𝑣2 = −0.959
𝑣6 = 𝑣3 + 𝑣4 = 10.693
𝑣7 = 𝑣6 − 𝑣5 = 11.652

Define ҧ𝑣𝑖 =
𝜕𝑓 𝑥1,𝑥2

𝜕𝑣𝑖
, while forward mode is ሶ𝑣𝑖 =

𝜕𝑣𝑖
𝜕𝑥1

We can then compute the ҧ𝑣𝑖 iteratively in the reverse
topological order of the computational graph

ҧ𝑣7 =
𝜕𝑓 𝑥1, 𝑥2

𝜕𝑣7
= 1

ҧ𝑣6 = ҧ𝑣7 ∙
𝜕𝑣7
𝜕𝑣6

= ҧ𝑣7 ∙ 1 = 1

ҧ𝑣5 = ҧ𝑣7 ∙
𝜕𝑣7
𝜕𝑣5

= ҧ𝑣7 ∙ −1 = −1

ҧ𝑣4 = ҧ𝑣6 ∙
𝜕𝑣6
𝜕𝑣4

= ҧ𝑣6 ∙ 1 = 1

ҧ𝑣3 = ҧ𝑣6 ∙
𝜕𝑣6
𝜕𝑣3

= ҧ𝑣6 ∙ 1 = 1

ҧ𝑣2 = ҧ𝑣5 ∙
𝜕𝑣5
𝜕𝑣2

+ ҧ𝑣4 ∙
𝜕𝑣4
𝜕𝑣2

= ҧ𝑣5 ∙ cos 𝑣2 + ҧ𝑣4 ∙ 𝑣1 = 1.716

ҧ𝑣1 = ҧ𝑣4 ∙
𝜕𝑣4
𝜕𝑣1

+ ҧ𝑣3 ∙
𝜕𝑣3
𝜕𝑣1

= ҧ𝑣4 ∙ 𝑣2 + ҧ𝑣2 ∙
1

𝑣1
= 5.5Get all input gradients in one pass



Derivation for Branches
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In this case, 𝑣1is being used in multiple pathways (i.e, 𝑣2 and 𝑣3)

𝑦 can be written in form of 𝑦 = 𝑓 𝑣2, 𝑣3 , hence

𝑣1 𝑣2

𝑣3

𝑣4 𝑦

ҧ𝑣1 =
𝜕𝑦

𝜕𝑣1
=
𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣1
=
𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣2
∙
𝜕𝑣2
𝜕𝑣1

+
𝜕𝑓 𝑣2, 𝑣3

𝜕𝑣3
∙
𝜕𝑣3
𝜕𝑣1

= ҧ𝑣2 ∙
𝜕𝑣2
𝜕𝑣1

+ ҧ𝑣3 ∙
𝜕𝑣3
𝜕𝑣1

Define partial adjoint ҧ𝑣𝑖→𝑗 = ҧ𝑣𝑗 ∙
𝜕𝑣𝑗

𝜕𝑣𝑖
for each input output node pair 𝑖 and 𝑗, we have

ҧ𝑣𝑖 = ෍

𝑗∈𝑎𝑑𝑗𝑜𝑖𝑛𝑡𝑠(𝑖)

ҧ𝑣𝑖→𝑗

We can compute partial adjoints separately then sum them together



Reverse Automatic Differentiation Algorithm
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def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

node_to_grad: dictionary to record a list of partial 
adjoints for each node

Sum up partial adjoints

Propagates partial adjoint to its input node



Reverse Mode AD by Extending Computational Graph
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𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 4

node_to_grad:{
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣4

}



Reverse Mode AD by Extending Computational Graph
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def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3→4ҧ𝑣2→4

×

×

𝑖 = 4

node_to_grad:{
2: [ ҧ𝑣2→4]
3: [ ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣4

}



Reverse Mode AD by Extending Computational Graph
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def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

𝑖 = 3

node_to_grad:{
2: [ ҧ𝑣2→4]
3: [ ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣3
ҧ𝑣4

}



Reverse Mode AD by Extending Computational Graph
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def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

𝑖 = 3

node_to_grad:{
2: [ ҧ𝑣2→4, ҧ𝑣2→3]
3: [ ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣3
ҧ𝑣4

}

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3



Reverse Mode AD by Extending Computational Graph
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def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 2

node_to_grad:{
2: [ ҧ𝑣2→4, ҧ𝑣2→3]
3: [ ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣2
ҧ𝑣3
ҧ𝑣4

}

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+



Reverse Mode AD by Extending Computational Graph

22

def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 2

node_to_grad:{
1: [ ҧ𝑣1→2]
2: [ ҧ𝑣2→4, ҧ𝑣2→3]
3: [ ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣2
ҧ𝑣3
ҧ𝑣4

}

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+

ҧ𝑣1→2
×



Reverse Mode AD by Extending Computational Graph
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def gradient(out):

node_to_grad = {out: [1]}

for 𝑖 in reverse_topo_order(out):

ҧ𝑣𝑖 = σ𝑗 ҧ𝑣𝑖→𝑗 =sum(node_to_grad[𝑖])

for 𝑘 in inputs[𝑖]

compute ҧ𝑣𝑘→𝑖 = ҧ𝑣𝑖
𝜕𝑣𝑖
𝜕𝑣𝑘

append ҧ𝑣𝑘→𝑖 to node_to_grad[𝑘]

return adjoint of input ҧ𝑣𝑖𝑛𝑝𝑢𝑡

𝑖 = 1

node_to_grad:{
1: [ ҧ𝑣1→2]
2: [ ҧ𝑣2→4, ҧ𝑣2→3]
3: [ ҧ𝑣3→4]
4: [1]

}

computed ҧ𝑣𝑖:{
ҧ𝑣1
ҧ𝑣2
ҧ𝑣3
ҧ𝑣4

}

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+

ҧ𝑣1
×



Compute in-place vs. Extend Computational Graph
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𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+

ҧ𝑣1
×

Reverse mode AutoDiff by 
extending computational graph

𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

Reverse mode AutoDiff by
computing in-place

• Run backward operations the same forward graph
• Used in earlier DL frameworks (caffe etc.)

• Construct separate graph nodes for adjoints.
• Used by modern deep learning frameworks.



Why Extend Computational Graph
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𝑣1

𝑣2

1

𝑣3

𝑣4

+
exp

×

1

ҧ𝑣4

ҧ𝑣3ҧ𝑣2→4

×

×

ҧ𝑣2→3ҧ𝑣2
+

ҧ𝑣1
×

Reverse mode AutoDiff by 
extending computational graph

• Construct separate graph nodes for adjoints.
• Used by modern deep learning frameworks.

• Unified execution runtime

• Native handling Gradient of Gradient

• The result of reverse mode AD is still a 

computational graph

• We can extend that graph further by 

composing more operations and run reverse 

mode AD again on the gradient
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