System for Artificial Intelligence

Automatic Differentiation

Siyuan Feng
Shanghai Innovation Institute

@ » Differentiation Methods

@ » Reverse Mode Auto Diff

.
Differentiation Methods

y N ©

B e85k

Shanghai Innovation Institute

S 4 «

Numerical Differentiation

Directly compute the partial gradient by definition

0(6) _ . f(0+ce) —f(8)
09i €50 €

A more numerically accurate way to approximate the gradient

0f(8) _ f(6+ee) — £(6 — ee)
GHL- B 2€

Suffer from numerical error, less efficient to compute

+ 0(€%)

v 4

Numerical Gradient Checking f L5 el 8 ZF

Shanghai Innovation Institute

However, numerical differentiation is a powerful tool to verify an
implement of an automatic differentiation algorithm

f(@+€d)—f(O—e€b)
2€

57Vof(6) = +0(e?)

Pick 6 from unit ball, check the above invariance.

N 4

Symbolic Differentiation " L it g %k

Shanghai Innovation Institute

Use the model formula to derive gradients by sum, product and chain
rules

L 0(f®)+9() _
Gl B

,9(f)g) _
Gl -

RIUCO)
00

4

Symbolic Differentiation s Lol EeR

ovation Institute

Use the model formula to derive gradients by sum, product and chain
rules

LU@)+9(®) _ 3(s(8)) | 9(9(6))

96 96 96
,0(f(6)9(®) _ a(f(e)) o((9))
= g(6) + £(6) ="
a(r(g®)) a(f(gw))) 2(g(8))
90 9g(0) 90

S

Symbolic Differentiation s Lol EeR

Shanghai Innovation Institute

Naively method can resultin wasted computation

: o
ro=[o =1 e

£

Example:

Cost n(n — 2) multiplies to compute all partial gradients

" 4 o

Recap: Computational Graph g L B8 8 F Ik

Shanghai Innovation Institute

f(x1,x3) =In(x1) + x1x, — sin(x;)

In

Each node represent an (intermediate) value in the
computation. Edges present input output relations.

N

Forward Mode Automatic Differentiation

f(x1,x3) =In(x1) + x1x, — sin(x;)

In

<3
[y
|

X1 = 2

UV, =X, =05

v = In(vy) = 0.693
vy =11 XUy, =10

ve = sin(v,) = —0.959
Vg = V3 + v, = 10.693
V7 = Vg — Vg = 11.652

. . ov;
Define v; = a_xl
1

"

B e85k

Shanghai Innovation Institute

We can then compute the v; iteratively in the forward
topological order of the computational graph

1.71 ==

1.72 =0

. 7

V3 =—= 05
(%1

Vg = V1V + 01 =5

Ve = Uy cos(vy) =0

Vg = VU3 + Uy = 5.5

Uy = Vg — s = 5.5

0f (e x2) _
d0xq

7.77 == 55

E Bt 8 F Kk

Shanghai Innovation Institute

N 4 «

Forward Mode Automatic Differentiation

f(x1,%x2) = In(xq) + x1x, — sin(x;) Define v; = g_;::
In

X1 ﬁl =9
1.7.2 =1
f(xlixZ) . ﬁl

V3 =—~= 0
V1

X2

7.7.4 = 7.7.1172 + 1.7.2171 =2

Ve = ¥y cos(v,) = 0.284

<3
[y
|

x1=2

<
N
Il

x2=5 U6=U3+U4=2
v = In(vy) = 0.693
vy =11 XUy, =10

ve = sin(v,) = —0.959
Vg = V3 + vy = 10.693 Of (x,%2) _ ., =1.716
v, = vg — vg = 11.652 0%,

Uy = ij6 — 1'7.5 = 1.716

v 4

Limitations of Forward Mode s LiEo e

Shanghai Innovation Institute

* For f:R" - R* we need n forward propagation passes to get the
gradient with respect to each input.

 However, we mostly care where k = 1 and a large n.

* The time complexity of forward mode auto diff is O(N?)

12

.
Reverse Mode Auto Diff

y N <,

v

Reverse Mode Automatic Differentiation

f(x1,x3) =In(x1) + x1x, — sin(x;)

In

V=X =2

X, =5

v = In(vy) = 0.693
vy =11 XUy, =10
sin(v,) = —0.959
Vg = V3 + v, = 10.693
V7 = Vg — Vg = 11.652

<
N
Il

<
ul
Il

Get all input gradients in one pass

Define v; =

avi

af(xlixZ)

€ 50 m e

' Shanghai Innovation Institute

6vi

, While forward mode is v; = —

0x1

We can then compute the v; iteratively in the reverse
topological order of the computational graph

_ af (x1, x7)
Uy = P =1
U7
__ 0v; _
176—177'6_1]6—177’1—1
. _ 0vy _
Vg = Uy a—vs—v7-—1——1
_ _ 0vg _
v4=176‘a_v4= 6.1:1
v
173:176 61]6:176.1:1
Gy =T av;+_ W _ 5 (vy) + 7, - vy = 1.716
Uy = Ut v, Uy sz_vs cos(v, Uy -1 = 1.
___ Ovy _ dvz _ _ 1
’Ul—'U4 6_171+v3 6—1]1—174.U2+v2-v—1_5.514 _\-

" 4 »

Derivation for Branches > L& 8 8 % K

Shanghai Innovation Institute

In this case, v4is being used in multiple pathways (i.e, v, and v3)

y can be written in form of y = f(v,, v3) , hence

_ dy 0f(vp,v3) 0f (vy,v3) . v, 6f(v2,v3) 6v3 _ s v, ovz | vz
(3171_ avl B avz avl avg 0171 2’ avl 3 avl

ov;

Define partial adjoint v;_,; = v; o0, —L - for each input output node pair i and j, we have

Vi = ﬁi—)j
jeadjoints(i)

We can compute partial adjoints separately then sum them together

' Reverse Automatic Differentiation Algorithm LB o8 2R

Shanghai Innovation Institute

def gradient(out):
node_to_grad: dictionary to record a list of partial

node_to_grad = {out: [1]} adjoints for each node

for i in reverse_topo_order(out):

v; = XjUij =sum(node_to_grad[i]) = <——— Sum up partial adjoints

for k in inputs][i]
— 6vi

compute vj_; = Vio"
k

append vUy_,; to node_to_grad[k] +<——— Propagates partial adjoint to its input node

AN

return adjoint of input Ui,y

E Bt 8 F Kk

Shanghai Innovation Institute

Reverse Mode AD by Extending Computational Graph "
def gradient(out):
node to grad = {out: [1]}

for i in reverse_topo _order(out):

B v; = XjUij =sum(node_to_grad[i]) @
for k in inputs[i] a
_ _ oy
compute Ty_; = v"a_:;k exp @
+
append v,_,; to node to grad[k] @

return adjoint of input Ui,y

=4 ©

node to grad:{ computed 7v;:{
4: [1] U4
} }

E Bt 8 F Kk

Shanghai Innovation Institute

Reverse Mode AD by Extending Computational Graph "

def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
U; =) Ujj =sum(node_to_grad[i])

for k in inputs[i]

— — avi
compute vy = via—vk
B append 7,_,; to node_to_grad[k]
return adjoint of input Ui,y
=4
node to grad:{ computed 7v;:{
2: [Vp-4] Uy
3: [U354] }
4: [1]
}

E Bt 8 F Kk

Shanghai Innovation Institute

7
Reverse Mode AD by Extending Computational Graph "
def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
B v; = XjUij =sum(node_to_grad[i])
for k in inputs[i]

— — avi
compute vy = Vig
k

append v,_,; to node to grad[k]
return adjoint of input Ui,y

i =3

node to grad:{ computed 7v;:{
2: [Vyoa] U3
3: [U354] Uy
4: [1] }

}

E Bt 8 F Kk

Shanghai Innovation Institute

Reverse Mode AD by Extending Computational Graph "

def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
U; =) Ujj =sum(node_to_grad[i])

for k in inputs[i]

— — avi
compute vy = via—vk
B append 7,_,; to node_to_grad[k]
return adjoint of input Ui,y
i=3
node to grad:{ computed 7v;:{
2: [V354,V253] U3
3t [U354] Uy
4: [1] }
}

E Bt 8 F Kk

Shanghai Innovation Institute

Reverse Mode AD by Extending Computational Graph f
def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
B v; = XjUij =sum(node_to_grad[i])
for k in inputs[i]

— — avi
compute vy = Vig
k

append v,_,; to node to grad[k]
return adjoint of input Ui,y

i =2

node to grad:{ computed 7v;:{
2: [Vy54,V253] U
3: [U354] U3
4: [1] Uy

} }

Reverse Mode AD by Extending Computational Graph f LisolgZF kR

Shanghai Innovation Institute
def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
U; =) Ujj =sum(node_to_grad[i])
for k in inputs[i]

compute v =7, 2
p Vi = Vi vy
B append 7,_,; to node_to_grad[k]
return adjoint of input Ui,y
[=2
node to grad:{ computed 7v;:{
1: [721—>2]_ 722
2: [V354,V253] U3
3: [V354] Uy
4: [1] }
}

E Bt 8 F Kk

Shanghai Innovation Institute

Reverse Mode AD by Extending Computational Graph f
def gradient(out):
node to grad = {out: [1]}
for i in reverse_topo _order(out):
B v; = XjUij =sum(node_to_grad[i])
for k in inputs[i]

— — avi
compute vy = Vig
k

append v,_,; to node to grad[k]
return adjoint of input Ui,y

i=1
node to grad:{ computed 7v;:{
1: [U152] Uy
2: [Uy54,V253] U
3: [773—>4] 173
4: [1] Uy
} }

v 4 o

Compute in-place vs. Extend Computational Graph > - 8 8l 8 F b

Shanghai Innovation Institute

Reverse mode AutoDiff by Reverse mode AutoDiff by
computing in-place extending computational graph

* Run backward operations the same forward graph * Construct separate graph nodes for adjoints.
e Used in earlier DL frameworks (caffe etc.) * Used by modern deep learning frameworks.

V o

v 4 o

Why Extend Computational Graph g LBERZIR

Shanghai Innovation Institute

Reverse mode AutoDiff by
extending computational graph

* Unified execution runtime

* Native handling Gradient of Gradient

* The result of reverse mode AD is still a

computational graph
* We can extend that graph further by
composing more operations and run reverse

mode AD again on the gradient

* Construct separate graph nodes for adjoints.

* Used by modern deep learning frameworks.
25

y

y
Acknowledgement S LEoEsR

Shanghai Innovation Institute

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and
institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.
- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely
our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

26

System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute

	Slide 1: Automatic Differentiation
	Slide 2
	Slide 3
	Slide 4: Numerical Differentiation
	Slide 5: Numerical Gradient Checking
	Slide 6: Symbolic Differentiation
	Slide 7: Symbolic Differentiation
	Slide 8: Symbolic Differentiation
	Slide 9: Recap: Computational Graph
	Slide 10: Forward Mode Automatic Differentiation
	Slide 11: Forward Mode Automatic Differentiation
	Slide 12: Limitations of Forward Mode
	Slide 13
	Slide 14: Reverse Mode Automatic Differentiation
	Slide 15: Derivation for Branches
	Slide 16: Reverse Automatic Differentiation Algorithm
	Slide 17: Reverse Mode AD by Extending Computational Graph
	Slide 18: Reverse Mode AD by Extending Computational Graph
	Slide 19: Reverse Mode AD by Extending Computational Graph
	Slide 20: Reverse Mode AD by Extending Computational Graph
	Slide 21: Reverse Mode AD by Extending Computational Graph
	Slide 22: Reverse Mode AD by Extending Computational Graph
	Slide 23: Reverse Mode AD by Extending Computational Graph
	Slide 24: Compute in-place vs. Extend Computational Graph
	Slide 25: Why Extend Computational Graph
	Slide 26: Acknowledgement
	Slide 27: Thanks

