
System for Artificial Intelligence

Hardware Acceleration

Siyuan Feng

Shanghai Innovation Institute

Recap: Overview of Machine Learning Systems

2

Graph Optimization

Automatic Differentiation

Parallelism / Distributed

Hardware Acceleration

ML Models

NVIDIA GPU HUAWEI NPU Mobile devices

This Lecture

Discussion: How to run a ML model w/o MLSys

3

Linear

ReLU

Linear

Softmax

input

Tensor[(batch, 128)]

Tensor[(batch, 3072)]

Tensor[(batch, 128)]

Tensor[(batch, 10)]

CUDA

Ascend C

C++

?

Discussion: How to run a ML model w/o MLSys

4

Linear

ReLU

Linear

Softmax

input

Tensor[(batch, 128)]

Tensor[(batch, 3072)]

Tensor[(batch, 128)]

Tensor[(batch, 10)]

CUDA

Ascend C

C++

Memory manager

Operator impl

Model executor

(Opt) AutoDiff

Minimum MLsys

Discussion: How to run a ML model w/o MLSys

5

Linear

ReLU

Linear

Softmax

input

Tensor[(batch, 128)]

Tensor[(batch, 3072)]

Tensor[(batch, 128)]

Tensor[(batch, 10)]

CUDA

Ascend C

C++

Memory manager

Operator impl

Model executor

(Opt) AutoDiff

Minimum MLsys

Critical to performance

O U T L I N E

01

02

6

General acceleration techniques

Case study: matrix multiplication

7

01
General acceleration techniques

Vectorization

8

void vec_add(float* A, float *B, float* C) {

 for (int i = 0; i < 64; ++i) {

 float4 a = load_float4(A + i*4);

 float4 b = load_float4(B + i*4);

 float4 c = add_float4(a, b);

 store_float4(C + i*4, c);

 }

}

Adding two float32 arrays of length 256, one float uses 32bit/4Byte memory

Additional requirements: memory (A, B, C) needs to be aligned to 128 bits

Parallelization

9

void parallel_vec_add(float* A, float *B, float* C) {

#pragma omp parallel for

for (int i = 0; i < 64; ++i) {

float4 a = load_float4(A + i*4);

float4 b = load_float4(B + i*4);

float4 c = add_float4(a, b);

store_float4(C + i*4, c);

}

}

Executes the computation on multiple threads

10

02
Case study: matrix multiplication

Vanilla Matrix Multiplication

11

float A[n][n], B[n][n], C[n][n];

for (int i = 0; i < n; ++i) {

 for (int j = 0; j < n; ++j) {

 C[i][j] = 0;

 for (int k = 0; k < n; ++k) {

 C[i][j] += A[i][k] * B[j][k];

 }

 }

}

Compute C = dot(A, B.T)

Θ 𝑁3

Strassen Algorithm: Reduce Complexity

12

𝐴 =
𝐴11 𝐴12
𝐴21 𝐴22

, 𝐵 =
𝐵11 𝐵12
𝐵21 𝐵22

, 𝐶 =
𝐶11 𝐶12
𝐶21 𝐶22

𝐶11 𝐶12
𝐶21 𝐶22

=
𝐴11 𝐴12
𝐴21 𝐴22

∙
𝐵11 𝐵12
𝐵21 𝐵22

Thus, we have

𝐶11 = 𝐴11 ∙ 𝐵11 + 𝐴12 ∙ 𝐵21
𝐶12 = 𝐴11 ∙ 𝐵12 + 𝐴12 ∙ 𝐵22
𝐶21 = 𝐴21 ∙ 𝐵11 + 𝐴22 ∙ 𝐵21
𝐶22 = 𝐴21 ∙ 𝐵12 + 𝐴22 ∙ 𝐵22

8 multiplications in normal algorithm

𝑀1 = 𝐴11 + 𝐴22 ∙ 𝐵11 + 𝐵22
𝑀2 = 𝐴21 + 𝐴22 ∙ 𝐵11
𝑀3 = 𝐴11 ∙ 𝐵12 − 𝐵22
𝑀4 = 𝐴22 ∙ 𝐵21 − 𝐵11
𝑀5 = 𝐴11 + 𝐴12 ∙ 𝐵22
𝑀6 = 𝐴21 − 𝐴11 ∙ 𝐵11 + 𝐵12
𝑀7 = (𝐴12 − 𝐴22) ∙ (𝐵21 + 𝐵22)

𝐶11 𝐶12
𝐶21 𝐶22

=
𝑀1 +𝑀4 −𝑀5 +𝑀7 𝑀3 +𝑀5

𝑀2 +𝑀4 𝑀1 −𝑀2 +𝑀3 +𝑀6

7 multiplications in Strassen algorithm

The general complexity is 𝜣 𝒏𝐥𝐨𝐠𝟐 𝟕

Memory Hierarchy on Modern CPUs

13

ALU

Registers

L1 Cache

L2 Cache

L3 Cache

DRAM

Intel Xeon Platinum 8558 CPU memory hierarchy

ICache 32KB/core
DCache 48KB/core

2MB/core

260MB

Up to 4TB

1 cycle / < 0.5 ns

4-5 cycle / 1-2 ns

12-18 cycle / 5-9 ns

30-50 cycle / 15-25 ns

200-800 cycle /
100-400 ns

32 x 512bit = 2KB/core

Architecture Aware Analysis

14

dram float A[n][n], B[n][n], C[n][n];

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
register float c = 0;
for (int k = 0; k < n; ++k) {
register float a = A[i][k];
register float b = B[j][k];
c += a * b;

}
C[i][j] = c;

}
}

A’s dram->register time cost: 𝑛3

B’s dram->register time cost: 𝑛3

Load cost: 2 ∗ 𝐶𝑑𝑟𝑎𝑚→𝑟𝑒𝑔 ∗ 𝑛3

Register Tiled Matrix Multiplication

15

dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][tj][tk];
dram float C[n/ti][n/tj][ti][tj];

for (int i = 0; i < n/ti; ++i) {
for (int j = 0; j < n/tj; ++j) {
register float c[ti][tj] = 0;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[ti][tk] = B[j][k];
c += dot(a, b.T);

}
C[i][j] = c;

}
}

A

B.T

C

𝑡𝑖

𝑡𝑗

𝑡𝑘

Register Tiled Matrix Multiplication

16

dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][tj][tk];
dram float C[n/ti][n/tj][ti][tj];

for (int i = 0; i < n/ti; ++i) {
for (int j = 0; j < n/tj; ++j) {
register float c[ti][tj] = 0;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[tj][tk] = B[j][k];
c += dot(a, b.T);

}
C[i][j] = c;

}
}

A’s dram->register time cost: 𝑛3/𝑡𝑗
B’s dram->register time cost: 𝑛3/𝑡𝑖

Load cost: 𝐶𝑑𝑟𝑎𝑚→𝑟𝑒𝑔
𝑛3

𝑡𝑖
+

𝑛3

𝑡𝑗

Discussion: Why need 𝑡𝑘

Register Tiled Matrix Multiplication

17

dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][tj][tk];
dram float C[n/ti][n/tj][ti][tj];

for (int i = 0; i < n/ti; ++i) {
for (int j = 0; j < n/tj; ++j) {
register float c[ti][tj] = 0;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[tj][tk] = B[j][k];
c += dot(a, b.T);

}
C[i][j] = c;

}
}

A’s register memory cost: 𝑇𝑖 × 𝑇𝑘
B’s register memory cost: 𝑇𝑗 × 𝑇𝑘
C’s register memory cost: 𝑇𝑖 × 𝑇𝑗

Register cost: 𝑇𝑖 × 𝑇𝑘 + 𝑇𝑗 × 𝑇𝑘 + 𝑇𝑖 × 𝑇𝑗

Load cost: 𝐶𝑑𝑟𝑎𝑚→𝑟𝑒𝑔
𝑛3

𝑇𝑖
+

𝑛3

𝑇𝑗

Cache Line Aware Tiling

18

dram float A[n/bi][bi][n];
dram float B[n/bj][bj][n];
dram float C[n/bi][n/bj][bi][bj];

for (int i = 0; i < n/bi; ++i) {
l1_cache float a[bi][n] = A[i];
for (int j = 0; j < n/bj; ++j) {
l1_cache b[bj][n] = B[j];

C[i][j] = dot(a, b.T);
}

}

18

A C

𝑏𝑖

𝑏𝑗

Question: Cache used and copy cost (dram->l1_cache)

Sub-procedure, can apply register tiling here

Cache Line Aware Tiling

19

dram float A[n/bi][bi][n];
dram float B[n/bj][bj][n];
dram float C[n/bi][n/bj][bi][bj];

for (int i = 0; i < n/bi; ++i) {
l1_cache float a[bi][n] = A[i];
for (int j = 0; j < n/bj; ++j) {
l1_cache b[bj][n] = B[j];

C[i][j] = dot(a, b.T);
}

}

19

A’s dram->register time cost: 𝑛2

B’s dram->register time cost: 𝑛3/𝑏𝑖

A’s cache memory cost: 𝑏𝑖 × 𝑛
B’s cache memory cost: 𝑏𝑗 × 𝑛

Putting everything together

20

dram float A[n/bi][bi/ti][n][ti];
dram float B[n/bj][bj/tj][n][tj];

for (int i = 0; i < n/bi; ++i) {
l1_cache float a[bi/ti][n][ti] = A[i];
for (int j = 0; j < n/bj; ++j) {
l1_cache b[bj/tj][n][tj] = B[j];
for (int x = 0; x < bi/ti; ++x)
for (int y = 0; y < bj/tj; ++y) {
register float c[ti][tj] = 0;
for (int k = 0; k < n; ++k) {
register float ar[ti] = a[x][k][:];
register float br[tj] = b[y][k][:];
C += dot(ar, br.T)

}
}

}
}

Question: total copy cost?Load cost: 𝐶𝑑𝑟𝑎𝑚→𝑙1 × 𝑛2 +
𝑛3

𝑏𝑖
+ 𝐶𝑙1→𝑟𝑒𝑔 ×

𝑛3

𝑡𝑖
+

𝑛3

𝑡𝑗

Key insight: Memory Load Reuse

21

float A[n][n];
float B[n][n];
float C[n][n];

C[i][j] = sum(A[i][k] * B[j][k], axis=k)

Access of 𝐴 is independent of 𝑗,
tile the 𝑗 dimension by 𝑡 enables reuse of 𝐴 for 𝑡 times.

Possible Reuse Pattern in Convolution

22

float Input[n][ci][h][w];
float Weight[co][ci][K][K];
float Output[n][co][h][w];

Conv[b][co][y][x] =
sum(Input[b][k][y+ry][x+rx] * Weight[co][k][ry][rx],

axis=[k, ry, rx])

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

23

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1: Hardware Acceleration
	Slide 2: Recap: Overview of Machine Learning Systems
	Slide 3: Discussion: How to run a ML model w/o MLSys
	Slide 4: Discussion: How to run a ML model w/o MLSys
	Slide 5: Discussion: How to run a ML model w/o MLSys
	Slide 6
	Slide 7
	Slide 8: Vectorization
	Slide 9: Parallelization
	Slide 10
	Slide 11: Vanilla Matrix Multiplication
	Slide 12: Strassen Algorithm: Reduce Complexity
	Slide 13: Memory Hierarchy on Modern CPUs
	Slide 14: Architecture Aware Analysis
	Slide 15: Register Tiled Matrix Multiplication
	Slide 16: Register Tiled Matrix Multiplication
	Slide 17: Register Tiled Matrix Multiplication
	Slide 18: Cache Line Aware Tiling
	Slide 19: Cache Line Aware Tiling
	Slide 20: Putting everything together
	Slide 21: Key insight: Memory Load Reuse
	Slide 22: Possible Reuse Pattern in Convolution
	Slide 23: Acknowledgement
	Slide 24: Thanks

