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Discussion: How to run a ML model w/o MLSys
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General acceleration techniques

Case study: matrix multiplication
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01
General acceleration techniques



Vectorization
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void vec_add(float* A, float *B, float* C) {

  for (int i = 0; i < 64; ++i) {

    float4 a = load_float4(A + i*4);

    float4 b = load_float4(B + i*4);

    float4 c = add_float4(a, b);

    store_float4(C + i*4, c);

  }

}

Adding two float32 arrays of length 256, one float uses 32bit/4Byte memory

Additional requirements: memory (A, B, C) needs to be aligned to 128 bits



Parallelization
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void parallel_vec_add(float* A, float *B, float* C) {

#pragma omp parallel for

for (int i = 0; i < 64; ++i) {

float4 a = load_float4(A + i*4);

float4 b = load_float4(B + i*4);

float4 c = add_float4(a, b);

store_float4(C + i*4, c);

}

}

Executes the computation on multiple threads
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02
Case study: matrix multiplication



Vanilla Matrix Multiplication

11

float A[n][n], B[n][n], C[n][n];

for (int i = 0; i < n; ++i) {

  for (int j = 0; j < n; ++j) {

    C[i][j] = 0;

    for (int k = 0; k < n; ++k) {

      C[i][j] += A[i][k] * B[j][k];

    } 

  }

}

Compute C = dot(A, B.T)

Θ 𝑁3



Strassen Algorithm: Reduce Complexity
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𝐴 =
𝐴11 𝐴12
𝐴21 𝐴22

, 𝐵 =
𝐵11 𝐵12
𝐵21 𝐵22

, 𝐶 =
𝐶11 𝐶12
𝐶21 𝐶22

𝐶11 𝐶12
𝐶21 𝐶22

=
𝐴11 𝐴12
𝐴21 𝐴22

∙
𝐵11 𝐵12
𝐵21 𝐵22

Thus, we have

𝐶11 = 𝐴11 ∙ 𝐵11 + 𝐴12 ∙ 𝐵21
𝐶12 = 𝐴11 ∙ 𝐵12 + 𝐴12 ∙ 𝐵22
𝐶21 = 𝐴21 ∙ 𝐵11 + 𝐴22 ∙ 𝐵21
𝐶22 = 𝐴21 ∙ 𝐵12 + 𝐴22 ∙ 𝐵22

8 multiplications in normal algorithm 

𝑀1 = 𝐴11 + 𝐴22 ∙ 𝐵11 + 𝐵22
𝑀2 = 𝐴21 + 𝐴22 ∙ 𝐵11
𝑀3 = 𝐴11 ∙ 𝐵12 − 𝐵22
𝑀4 = 𝐴22 ∙ 𝐵21 − 𝐵11
𝑀5 = 𝐴11 + 𝐴12 ∙ 𝐵22
𝑀6 = 𝐴21 − 𝐴11 ∙ 𝐵11 + 𝐵12
𝑀7 = (𝐴12 − 𝐴22) ∙ (𝐵21 + 𝐵22)

𝐶11 𝐶12
𝐶21 𝐶22

=
𝑀1 +𝑀4 −𝑀5 +𝑀7 𝑀3 +𝑀5

𝑀2 +𝑀4 𝑀1 −𝑀2 +𝑀3 +𝑀6

7 multiplications in Strassen algorithm 

The general complexity is 𝜣 𝒏𝐥𝐨𝐠𝟐 𝟕



Memory Hierarchy on Modern CPUs
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Intel Xeon Platinum 8558 CPU memory hierarchy

ICache 32KB/core
DCache 48KB/core

2MB/core

260MB

Up to 4TB

1 cycle / < 0.5 ns

4-5 cycle / 1-2 ns

12-18 cycle / 5-9 ns

30-50 cycle / 15-25 ns

200-800 cycle / 
100-400 ns

32 x 512bit = 2KB/core



Architecture Aware Analysis
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dram float A[n][n], B[n][n], C[n][n];

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
register float c = 0;
for (int k = 0; k < n; ++k) {
register float a = A[i][k];
register float b = B[j][k];
c += a * b;

} 
C[i][j] = c;

}
}

A’s dram->register time cost: 𝑛3

B’s dram->register time cost: 𝑛3

Load cost: 2 ∗ 𝐶𝑑𝑟𝑎𝑚→𝑟𝑒𝑔 ∗ 𝑛3



Register Tiled Matrix Multiplication
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dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][tj][tk];
dram float C[n/ti][n/tj][ti][tj];

for (int i = 0; i < n/ti; ++i) {
for (int j = 0; j < n/tj; ++j) {
register float c[ti][tj] = 0;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[ti][tk] = B[j][k];
c += dot(a, b.T);

} 
C[i][j] = c;

}
}

A

B.T

C

𝑡𝑖

𝑡𝑗

𝑡𝑘



Register Tiled Matrix Multiplication
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dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][tj][tk];
dram float C[n/ti][n/tj][ti][tj];

for (int i = 0; i < n/ti; ++i) {
for (int j = 0; j < n/tj; ++j) {
register float c[ti][tj] = 0;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[tj][tk] = B[j][k];
c += dot(a, b.T);

} 
C[i][j] = c;

}
}

A’s dram->register time cost: 𝑛3/𝑡𝑗
B’s dram->register time cost: 𝑛3/𝑡𝑖

Load cost: 𝐶𝑑𝑟𝑎𝑚→𝑟𝑒𝑔
𝑛3

𝑡𝑖
+

𝑛3

𝑡𝑗

Discussion: Why need 𝑡𝑘



Register Tiled Matrix Multiplication
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dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][tj][tk];
dram float C[n/ti][n/tj][ti][tj];

for (int i = 0; i < n/ti; ++i) {
for (int j = 0; j < n/tj; ++j) {
register float c[ti][tj] = 0;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[tj][tk] = B[j][k];
c += dot(a, b.T);

} 
C[i][j] = c;

}
}

A’s register memory cost: 𝑇𝑖 × 𝑇𝑘
B’s register memory cost: 𝑇𝑗 × 𝑇𝑘
C’s register memory cost: 𝑇𝑖 × 𝑇𝑗

Register cost: 𝑇𝑖 × 𝑇𝑘 + 𝑇𝑗 × 𝑇𝑘 + 𝑇𝑖 × 𝑇𝑗

Load cost: 𝐶𝑑𝑟𝑎𝑚→𝑟𝑒𝑔
𝑛3

𝑇𝑖
+

𝑛3

𝑇𝑗



Cache Line Aware Tiling
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dram float A[n/bi][bi][n];
dram float B[n/bj][bj][n];
dram float C[n/bi][n/bj][bi][bj];

for (int i = 0; i < n/bi; ++i) {
l1_cache float a[bi][n] = A[i];
for (int j = 0; j < n/bj; ++j) {
l1_cache b[bj][n] = B[j];

C[i][j] = dot(a, b.T);
}

}

18

A C

𝑏𝑖

𝑏𝑗

Question: Cache used and copy cost (dram->l1_cache)

Sub-procedure, can apply register tiling here



Cache Line Aware Tiling
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dram float A[n/bi][bi][n];
dram float B[n/bj][bj][n];
dram float C[n/bi][n/bj][bi][bj];

for (int i = 0; i < n/bi; ++i) {
l1_cache float a[bi][n] = A[i];
for (int j = 0; j < n/bj; ++j) {
l1_cache b[bj][n] = B[j];

C[i][j] = dot(a, b.T);
}

}

19

A’s dram->register time cost: 𝑛2

B’s dram->register time cost: 𝑛3/𝑏𝑖

A’s cache memory cost: 𝑏𝑖 × 𝑛
B’s cache memory cost: 𝑏𝑗 × 𝑛



Putting everything together
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dram float A[n/bi][bi/ti][n][ti];
dram float B[n/bj][bj/tj][n][tj];

for (int i = 0; i < n/bi; ++i) {
l1_cache float a[bi/ti][n][ti] = A[i];
for (int j = 0; j < n/bj; ++j) {
l1_cache b[bj/tj][n][tj] = B[j];
for (int x = 0; x < bi/ti; ++x) 
for (int y = 0; y < bj/tj; ++y) {
register float c[ti][tj] = 0;
for (int k = 0; k < n; ++k) {
register float ar[ti] = a[x][k][:];
register float br[tj] = b[y][k][:];
C += dot(ar, br.T)

}
} 

}
}

Question: total copy cost?Load cost: 𝐶𝑑𝑟𝑎𝑚→𝑙1 × 𝑛2 +
𝑛3

𝑏𝑖
+ 𝐶𝑙1→𝑟𝑒𝑔 ×

𝑛3

𝑡𝑖
+

𝑛3

𝑡𝑗



Key insight: Memory Load Reuse
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float A[n][n];
float B[n][n];
float C[n][n];

C[i][j] = sum(A[i][k] * B[j][k], axis=k)

Access of 𝐴 is independent of 𝑗, 
tile the 𝑗 dimension by 𝑡 enables reuse of 𝐴 for 𝑡 times.



Possible Reuse Pattern in Convolution
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float Input[n][ci][h][w];
float Weight[co][ci][K][K];
float Output[n][co][h][w];

Conv[b][co][y][x] = 
sum(Input[b][k][y+ry][x+rx] * Weight[co][k][ry][rx], 

axis=[k, ry, rx])
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