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' Discussion: How to run a ML model w/o MLSys
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@ » General acceleration techniques

@ » Case study: matrix multiplication
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General acceleration techniques
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Adding two float32 arrays of length 256, one float uses 32bit/4Byte memory

void vec_add(float* A, float *B, float* C) {
for (int 1 = 0; 1 < 64; ++i) {
float4 a = load floatd(A + i*4);
float4 b = load float4(B + i*4);
float4 c = add floatd4(a, b);
store floatd4(C + i*4, c);

Additional requirements: memory (A, B, C) needs to be aligned to 128 bits
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Parallelization

void parallel vec add(float* A, float *B, float* C) {
#pragma omp parallel for
for (int i = 0; 1 < 64; ++i) {
floatd a = load floatd(A + i*4);
float4d b = load floatd4(B + i*4);
float4 c = add _float4(a, b);
store floatd4(C + i*4, c),;

Executes the computation on multiple threads
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Case study: matrix multiplication
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anilla Matrix Multiplication
Compute C = dot(A, B.T)
float A[n][n], B[n][n], C[n][n];

for (int 1 =0; 1 < n; ++1) {
for (int j = 0; j < n; ++j) {
C[i][3] = ©;
for (int k = 0; k < n; ++k) {
C[i][3] += A[i][k] * B[J][k];
}
}
}

O(N?3)
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Strassen Algorithm: Reduce Complexity

Aqq A12] [B11 B12‘ [
A= [ B = C=
Ay Ay By1 By
C11 C12] _ [A11 A12] . [B11 B12]
Cr1 Cy Ay1 Ayl 1Bz1 By
Thus, we have
Ci1 = A1 B+ 412 Byy
Ci2 = A11 - B1x + Aq5 - By
Cy1 = Ay By + Ay - By
Coy = A1 - By + Ay - By

8 multiplications in normal algorithm

Cl 1
CZ 1

ClZ
CZ 2
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My = (A11 + Azz) - (Byg + Bya)
M, = (A1 + Azz) - B1g
M3 = Aqq - (312 - Bzz)
My = Ay, - (321 - B11)
Ms = (A11 + A12) * By
Mg = (A1 — A1) - (B11 + Bya)
M7 = (A12 — Azz) * (Bz1 + Byy)

Cll
C21

+ M, — Mz + M-,
M, + M,

M3 + Mg

Cra] _ [
M; — M, + M + M,

CZZ

7 multiplications in Strassen algorithm

The general complexity is @(n!827)
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1 cycle /< 0.5ns 32 x 512bit = 2KB/core

ICache 32KB/core

4-5 cycle / 1-2 ns one DCache 48KB/core

12-18 cycle / 5-9 ns L2 Cache 2MB/core

30-50 cycle / 15-25 ns L3 Cache

DRAM Up to 4TB

Intel Xeon Platinum 8558 CPU memory hierarchy

(o

260MB

200-800 cycle /
100-400 ns
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Architecture Aware Analysis L 58l & % R
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dram float A[n][n], B[n][n], C[n][n];

for (int i =0; i < n; ++1) {
for (int j = 0; j < n; ++j) {
register float c = ©;
for (int k = 0; k < n; ++k) {
register float a = A[1][k];
register float b = B[j][k];
c += a * b;

A’s dram->register time cost: n3
B’s dram->register time cost: n3

}

C[i][]] = c; Load cost: 2 * Caramoreg * n3

}
¥




Register Tiled Matrix Multiplication

dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][t]j][tk];
dram float C[n/ti][n/tj][ti][t]];

for (int i = 0; i < n/ti; ++1) {
for (int j = 0; j < n/tj; ++3j) {
register float c[ti][t]] = ©;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[ti][tk] B[jl[k];
c += dot(a, b.T);
}
C[i][J] = <;
}
}

’,‘
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Register Tiled Matrix Multiplication

dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][t]j][tk];

dram float C[n/ti][n/tj][ti][t]]; A’s dram->register time cost: n3/t;
- j

) _ : : . 3/+.
For (int i = @; 1 < n/ti; ++i) { B’s dram->register time cost: n°/t;

for (int j = ©; j < n/tj; ++j) {
register float c[ti][t]] = ©;
for (int k = 0; k < n/tk; ++k) {

register float a[ti][tk] = A[i][k];

register float b[tj][tk] = B[j][k];

¢ += dot(a, b.T); O
} Load cost: Cyramoreg (Tl +t_J)

C[i][3] = <;
}
} Discussion: Why need t;,
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dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][t]j][tk];

dram float C[n/ti][n/tj][ti][t]]; A’s register memory cost: T; X Ty

B’s register memory cost: T; X Ty
for (int 1 = 0; i < n/ti; ++1i) { C’s register memory cost: T; XT;
for (int j = 0; j < n/tj; ++j) {
register float c[ti][t]] = ©;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[tj][tk] = B[j][k];
} c += dot(a, b.T); Load c05t: Caramres (Z_j"';_g)

J
i][3] = c;
} C[i][]] = c; Register cost: T; X Ty + T; X Ty, + T; X T

¥
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Cache Line Aware Tiling

dram float A[n/bi][bi][n];
dram float B[n/bj][bj]l[n];
dram float C[n/bi][n/bj][bi][bj];

for (int i = 0; 1 < n/bi; ++i) {
11 cache float a[bi][n] = A[i];
for (int j = ©; j < n/bj; ++3) {
11 _cache b[bj][n] = B[]];

C[i][j] = dot(a, b.T);

}} \ A c

Sub-procedure, can apply register tiling here b;

Question: Cache used and copy cost (dram->I1_cache)
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Cache Line Aware Tiling

dram float A[n/bi][bi][n];
dram float B[n/bj][bj][n];
dram float C[n/bi][n/bj][bi][bj];

for (int i = 0; 1 < n/bi; ++i) {
11 cache float a[bi][n] = A[i];
for (int j = 0; j < n/bj; ++j) {
11 cache b[bj][n] = B[j];

C[i][j] = dot(a, b.T);
}
}
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A’s dram->register time cost:
B’s dram->register time cost:

A’s cache memory cost: b; Xn
B’s cache memory cost: bj Xn

n3/b;
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dram float A[n/bi][bi/ti][n][ti];
dram float B[n/bj][bj/tj][n][t]i];

for (int 1 = 0; 1 < n/bi; ++1) {
11 cache float a[bi/ti][n][ti] = A[i];
for (int j = 0; j < n/bj; ++3j) {
11_cache b[bj/tj][n][t]j] = B[J];
for (int x = 0; x < bi/ti; ++x)
for (int y = 0; y < bj/tj; ++y) {
register float c[ti][t]] = ©;
for (int k = 0; k < n; ++k) {
register float ar[ti] = a[x][k][:];
register float br[tj] bly]l[k][:];
C += dot(ar, br.T)
\ }
3 3 3
} Load cost: Cyramoi1 X (n2 + 7;—) + Clioreg X (’z—l + ’Z_])

} l 20
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float A[n][n];
float B[n][n];
float C[n][n];

C[i][J] = sum(A[i][k] * B[J][k], axis=k)

Access of A is independent of j,
tile the j dimension by t enables reuse of A for t times.

4N
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float Input[n][ci][h][w];
float Weight[co][ci][K][K];
float Output[n][co][h][w];

Conv[b][co][y]l[x] =
sum(Input[b][k][y+ry][x+rx] * Weight[co][k][ry][rx],
axis=[k, ry, rx])
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