System for Artificial Intelligence

Hardware Acceleration

Siyuan Feng
Shanghai Innovation Institute




' Recap: Overview of Machine Learning Systems Lo e
g ML Models

Automatic Differentiation

Graph Optimization
Parallelism / Distributed

Hardware Acceleration - This Lecture

-
|

NVIDIA GPU HUAWEI NPU Mobile devices




B8 %R

Shanghai Innovation Institute

' Discussion: How to run a ML model w/o MLSys

input

Tensor[ (batch, 3072)]

I

l Tensor[(batch, 128)] ?

RelU

Tensor[(batch, 128)] ‘

inear

Tensor[(batch, 10)]

v

max




Lt s s 2R

Shanghai Innovation Institute

' Discussion: How to run a ML model w/o MLSys

input

Tensor[ (batch, 3072)]

I

Tensor[(batch, 128)]

—

RelU

Tensor[ (batch, 128)]

v

inear

Operator impl

Tensor[(batch, 10)]

<

y

Memory manager

max




Lt s s 2R

Shanghai Innovation Institute

' Discussion: How to run a ML model w/o MLSys

input

Tensor[ (batch, 3072)]

I

—

oy,

(Opt) AutoDiff
Operator impl

Tensor[(batch, 128)]

RelU

Tensor[ (batch, 128)]

>
("2
(]
M
3
Q.
@)

v

inear

Tensor[ (batch, 10)] Critical to performance

<

y

Memory manager

Minimum MLsys

max

o - o - — —— o o -




@ » General acceleration techniques

@ » Case study: matrix multiplication



4
General acceleration techniques

y N ©




" 4

Vectorization :5‘ IR RN

Shanghai Innovation Institute

Adding two float32 arrays of length 256, one float uses 32bit/4Byte memory

void vec_add(float* A, float *B, float* C) {
for (int 1 = 0; 1 < 64; ++i) {
float4 a = load floatd(A + i*4);
float4 b = load float4(B + i*4);
float4 c = add floatd4(a, b);
store floatd4(C + i*4, c);

Additional requirements: memory (A, B, C) needs to be aligned to 128 bits



E Bt 8 F Kk

Shanghai Innovation Institute

S A «

Parallelization

void parallel vec add(float* A, float *B, float* C) {
#pragma omp parallel for
for (int i = 0; 1 < 64; ++i) {
floatd a = load floatd(A + i*4);
float4d b = load floatd4(B + i*4);
float4 c = add _float4(a, b);
store floatd4(C + i*4, c),;

Executes the computation on multiple threads




¢
Case study: matrix multiplication

y N <,




Y,

anilla Matrix Multiplication
Compute C = dot(A, B.T)
float A[n][n], B[n][n], C[n][n];

for (int 1 =0; 1 < n; ++1) {
for (int j = 0; j < n; ++j) {
C[i][3] = ©;
for (int k = 0; k < n; ++k) {
C[i][3] += A[i][k] * B[J][k];
}
}
}

O(N?3)

g el 8 F bk

Shanghai Innovation Institute




v

Strassen Algorithm: Reduce Complexity

Aqq A12] [B11 B12‘ [
A= [ B = C=
Ay Ay By1 By
C11 C12] _ [A11 A12] . [B11 B12]
Cr1 Cy Ay1 Ayl 1Bz1 By
Thus, we have
Ci1 = A1 B+ 412 Byy
Ci2 = A11 - B1x + Aq5 - By
Cy1 = Ay By + Ay - By
Coy = A1 - By + Ay - By

8 multiplications in normal algorithm

Cl 1
CZ 1

ClZ
CZ 2

|

E Bt 8 F Kk

Shanghai Innovation Institute

"

My = (A11 + Azz) - (Byg + Bya)
M, = (A1 + Azz) - B1g
M3 = Aqq - (312 - Bzz)
My = Ay, - (321 - B11)
Ms = (A11 + A12) * By
Mg = (A1 — A1) - (B11 + Bya)
M7 = (A12 — Azz) * (Bz1 + Byy)

Cll
C21

+ M, — Mz + M-,
M, + M,

M3 + Mg

Cra] _ [
M; — M, + M + M,

CZZ

7 multiplications in Strassen algorithm

The general complexity is @(n!827)

N

12‘
k.



Memory Hierarchy on Modern CPUs L5 el 8 % bk

Shanghai Innovation Institute
+]-
x[+=] ALU

1 cycle /< 0.5ns 32 x 512bit = 2KB/core

ICache 32KB/core

4-5 cycle / 1-2 ns one DCache 48KB/core

12-18 cycle / 5-9 ns L2 Cache 2MB/core

30-50 cycle / 15-25 ns L3 Cache

DRAM Up to 4TB

Intel Xeon Platinum 8558 CPU memory hierarchy

(o

260MB

200-800 cycle /
100-400 ns




N 4 «

Architecture Aware Analysis L 58l & % R

Shanghai Innovation Institute

dram float A[n][n], B[n][n], C[n][n];

for (int i =0; i < n; ++1) {
for (int j = 0; j < n; ++j) {
register float c = ©;
for (int k = 0; k < n; ++k) {
register float a = A[1][k];
register float b = B[j][k];
c += a * b;

A’s dram->register time cost: n3
B’s dram->register time cost: n3

}

C[i][]] = c; Load cost: 2 * Caramoreg * n3

}
¥




Register Tiled Matrix Multiplication

dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][t]j][tk];
dram float C[n/ti][n/tj][ti][t]];

for (int i = 0; i < n/ti; ++1) {
for (int j = 0; j < n/tj; ++3j) {
register float c[ti][t]] = ©;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[ti][tk] B[jl[k];
c += dot(a, b.T);
}
C[i][J] = <;
}
}

’,‘

g el 8 F bk

Shanghai Innovation Institute

B.T




E Bt 8 F Kk

Shanghai Innovation Institute

S A «

Register Tiled Matrix Multiplication

dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][t]j][tk];

dram float C[n/ti][n/tj][ti][t]]; A’s dram->register time cost: n3/t;
- j

) _ : : . 3/+.
For (int i = @; 1 < n/ti; ++i) { B’s dram->register time cost: n°/t;

for (int j = ©; j < n/tj; ++j) {
register float c[ti][t]] = ©;
for (int k = 0; k < n/tk; ++k) {

register float a[ti][tk] = A[i][k];

register float b[tj][tk] = B[j][k];

¢ += dot(a, b.T); O
} Load cost: Cyramoreg (Tl +t_J)

C[i][3] = <;
}
} Discussion: Why need t;,




N 4

Register Tiled Matrix Multiplication f Lisel8gZF kK

Shanghai Innovation Institute

dram float A[n/ti][n/tk][ti][tk];
dram float B[n/tj][n/tk][t]j][tk];

dram float C[n/ti][n/tj][ti][t]]; A’s register memory cost: T; X Ty

B’s register memory cost: T; X Ty
for (int 1 = 0; i < n/ti; ++1i) { C’s register memory cost: T; XT;
for (int j = 0; j < n/tj; ++j) {
register float c[ti][t]] = ©;
for (int k = 0; k < n/tk; ++k) {
register float a[ti][tk] = A[i][k];
register float b[tj][tk] = B[j][k];
} c += dot(a, b.T); Load c05t: Caramres (Z_j"';_g)

J
i][3] = c;
} C[i][]] = c; Register cost: T; X Ty + T; X Ty, + T; X T

¥

17

y



g el 8 F bk

Shanghai Innovation Institute

£ y

Cache Line Aware Tiling

dram float A[n/bi][bi][n];
dram float B[n/bj][bj]l[n];
dram float C[n/bi][n/bj][bi][bj];

for (int i = 0; 1 < n/bi; ++i) {
11 cache float a[bi][n] = A[i];
for (int j = ©; j < n/bj; ++3) {
11 _cache b[bj][n] = B[]];

C[i][j] = dot(a, b.T);

}} \ A c

Sub-procedure, can apply register tiling here b;

Question: Cache used and copy cost (dram->I1_cache)




Y 4

Cache Line Aware Tiling

dram float A[n/bi][bi][n];
dram float B[n/bj][bj][n];
dram float C[n/bi][n/bj][bi][bj];

for (int i = 0; 1 < n/bi; ++i) {
11 cache float a[bi][n] = A[i];
for (int j = 0; j < n/bj; ++j) {
11 cache b[bj][n] = B[j];

C[i][j] = dot(a, b.T);
}
}

Hansnss
> g6 8 ZFF[

Shanghai Innovation Institute

A’s dram->register time cost:
B’s dram->register time cost:

A’s cache memory cost: b; Xn
B’s cache memory cost: bj Xn

n3/b;




N 4

Putting everything together f £ B 8l 5§ 2 b

Shanghai Innovation Institute

dram float A[n/bi][bi/ti][n][ti];
dram float B[n/bj][bj/tj][n][t]i];

for (int 1 = 0; 1 < n/bi; ++1) {
11 cache float a[bi/ti][n][ti] = A[i];
for (int j = 0; j < n/bj; ++3j) {
11_cache b[bj/tj][n][t]j] = B[J];
for (int x = 0; x < bi/ti; ++x)
for (int y = 0; y < bj/tj; ++y) {
register float c[ti][t]] = ©;
for (int k = 0; k < n; ++k) {
register float ar[ti] = a[x][k][:];
register float br[tj] bly]l[k][:];
C += dot(ar, br.T)
\ }
3 3 3
} Load cost: Cyramoi1 X (n2 + 7;—) + Clioreg X (’z—l + ’Z_])

} l 20



' Key insight: Memory Load Reuse £ B8l 8 % [k

Shanghai Innovation Institute

float A[n][n];
float B[n][n];
float C[n][n];

C[i][J] = sum(A[i][k] * B[J][k], axis=k)

Access of A is independent of j,
tile the j dimension by t enables reuse of A for t times.

4N



Possible Reuse Pattern in Convolution f Lol 8 R

Shanghai Innovation Institute

float Input[n][ci][h][w];
float Weight[co][ci][K][K];
float Output[n][co][h][w];

Conv[b][co][y]l[x] =
sum(Input[b][k][y+ry][x+rx] * Weight[co][k][ry][rx],
axis=[k, ry, rx])




y
Acknowledgement S LEoEsR

Shanghai Innovation Institute

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and
institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.
- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely
our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

23



System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute




	Slide 1: Hardware Acceleration
	Slide 2: Recap: Overview of Machine Learning Systems
	Slide 3: Discussion: How to run a ML model w/o MLSys
	Slide 4: Discussion: How to run a ML model w/o MLSys
	Slide 5: Discussion: How to run a ML model w/o MLSys
	Slide 6
	Slide 7
	Slide 8: Vectorization
	Slide 9: Parallelization
	Slide 10
	Slide 11: Vanilla Matrix Multiplication
	Slide 12: Strassen Algorithm: Reduce Complexity
	Slide 13: Memory Hierarchy on Modern CPUs
	Slide 14: Architecture Aware Analysis
	Slide 15: Register Tiled Matrix Multiplication
	Slide 16: Register Tiled Matrix Multiplication
	Slide 17: Register Tiled Matrix Multiplication
	Slide 18: Cache Line Aware Tiling
	Slide 19: Cache Line Aware Tiling
	Slide 20: Putting everything together
	Slide 21: Key insight: Memory Load Reuse
	Slide 22: Possible Reuse Pattern in Convolution
	Slide 23: Acknowledgement
	Slide 24: Thanks

