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Recap: Overview of Machine Learning Systems
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01
Parallel Computing



SISD: Single Instruction, Single Data
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Conventional single instruction, 
single data processor

Instruction 
Fetch / Decode

ALU
(Execute)

Exec Context
(Registers) 



SIMD: Single Instruction, Multiple Data
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Instruction 
Fetch / Decode

ALU
(Execute)

Exec Context
(Registers) 

Conventional single instruction, 
single data processor

Modern single instruction, 
multiple data processor

Instruction 
Fetch / Decode

Exec Context
(Registers) 

ALU 0

ALU 4

ALU 1

ALU 5

ALU 2

ALU 6
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ALU 7



SIMD: Single Instruction, Multiple Data
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Modern single instruction, 
multiple data processor

Instruction 
Fetch / Decode

Exec Context
(Registers) 

ALU 0

ALU 4

ALU 1

ALU 5

ALU 2

ALU 6

ALU 3

ALU 7

• Same instruction broadcast and executed 
in parallel on all ALUs

• Add ALUs to increase compute capability

• Usually used as Vectorize



SIMT: Single Instruction, Multiple Thread
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Instruction 
Fetch / Decode

ALU
(Execute)

Exec Context
(Registers) 

Conventional single instruction, 
single data processor

Modern single instruction, 
multiple thread GPUs

Instruction 
Fetch / Decode

Reg

ALU 0 ALU 1 ALU 2 ALU 3

Reg Reg Reg



SIMT: Single Instruction, Multiple Thread
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Modern single instruction, 
multiple thread GPUs

Instruction 
Fetch / Decode

Reg

ALU 0 ALU 1 ALU 2 ALU 3

Reg Reg Reg

• One of the subcategories of SIMD

• Each ALU has its own separate register file

• Usually used in modern GPGPU



MIMD: Multiple Instruction, Multiple Data
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Instruction 
Fetch / Decode

ALU
(Execute)

Exec Context
(Registers) 

Conventional single instruction, 
single data processor

Modern multiple instruction, 
multiple data processor

Inst

Reg

ALU 0 ALU 1 ALU 2 ALU 3

Reg Reg Reg

Inst Inst Inst



Massive Parallel Computing Units in GPGPU
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Inst

Ctx

SM 0 SM 1 SM 2 SM 3

Ctx Ctx Ctx

Inst Inst Inst

Modern GPU

MIMD multi-Core processor

Streaming Multiprocessor

Instruction 
Fetch / Decode

Ctx

Thread 
0

Thread 
1

Thread 
2

Thread 
3

Ctx Ctx Ctx

SIMT streaming multiprocessor

Each thread in SM

Instruction 
Fetch / Decode

Exec Context
(Registers) 

ALU 0

ALU 4

ALU 1

ALU 5

ALU 2

ALU 6

ALU 3

ALU 7

SIMD thread
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02
GPU Architectures



H100 Architecture with Tensor Cores

13
GH100 Full GPU with 144 SMs, while H100 SMX has only 132 SMsOne SM



H100 Streaming Multiprocessor
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Shared Memory / L1 Data Cache 

Tensor Memory Accelerator (TMA), highly efficient, 
asynchronous, and bi-directional transfer of multi-
dimensional tensors between global memory and 
shared memory



H100 Streaming Multiprocessor
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H100 Streaming Multiprocessor
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CUDA Cores (Scalar ALUs)
managed by 32 CUDA threads



H100 Streaming Multiprocessor
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Tensor Cores, used for matrix multiplication
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03
CUDA Programming Abstractions



Basic CUDA syntax
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Host program: running as part of normal C/C++ application on CPU

CUDA kernel: executed in parallel on multiple SMs

const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each 

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],
float C[Ny][Nx]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

C[j][i] = A[j][i] + B[j][i];
}

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

Host

Device

__global__ denotes a CUDA kernel runs 
on GPU

Each thread computes its overall grid thread id 
from its position in its block (threadIdx) and its 
block’s position in the grid (blockIdx)



Clear Separation of Host and Device Code
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const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each 

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device__ float doubleValue(float x)
{
return 2 * x;

}
__global__ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],
float C[Ny][Nx]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

C[j][i] = A[j][i] + B[j][i];
}

Host

Device

__global__ denotes a CUDA kernel runs 
on GPU

Separation of execution into host and device 
code is performed statically by the programmer

__device__ denotes a CUDA function 
that can be called from device or global
function

Function without any attribute runs on 
Host as common C++ program



CUDA Memory Model
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Host

Device

Host Device (CPU)

CUDA Device (GPU)

Host memory address space

CUDA device memory address space

Distinct host and device address spaces:

• Cannot access host memory from device

• Cannot access device memory from host



Case Study: Minimal Example
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Host

Device

Host Device (CPU)

CUDA Device (GPU)

Host memory address space

CUDA device memory address space

float* A = new float[N]; 

for (int i=0 i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;              
cudaMalloc(&deviceA, bytes); 

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

Init data on host device



cudaMalloc: Allocate Memory Space on Device
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Host

Device

Host Device (CPU)

CUDA Device (GPU)

Host memory address space

CUDA device memory address space

float* A = new float[N]; 

for (int i=0 i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;              
cudaMalloc(&deviceA, bytes); 

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

Allocate memory with specific size on device, 
and store the pointer to `deviceA`



cudaMemcpy: Move Data Between Host and Device
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Host

Device

Host Device (CPU)

CUDA Device (GPU)

Host memory address space

CUDA device memory address space

float* A = new float[N]; 

for (int i=0 i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;              
cudaMalloc(&deviceA, bytes); 

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

Copy data from host to device

NOTE: 
1. deviceA[i] is an invalid operation on host side
2. cudaMemcpy also support copy from device to host



Basic CUDA Syntax
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Host program: running as part of normal C/C++ application on CPU

CUDA kernel: executed in parallel on multiple SMs

const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each 

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],
float C[Ny][Nx]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

C[j][i] = A[j][i] + B[j][i];
}

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

Host

Device

__global__ denotes a CUDA kernel runs 
on GPU

Each thread computes its overall grid thread id 
from its position in its block (threadIdx) and its 
block’s position in the grid (blockIdx)



CUDA Programs Consist of a Hierarchy of Threads

threadIdx and blockIdx are up to 3-dimensional (2D example below)
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const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each 

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Grid

Block(0, 0) Block(1, 0) Block(2, 0)

Block(0, 1) Block(1, 1) Block(2, 1)

Block(1, 1)

Thread(0, 0) Thread(1, 0) Thread(2, 0) Thread(3, 0)

Thread(0, 1) Thread(1, 1) Thread(2, 1) Thread(3, 1)

Thread(0, 2) Thread(1, 2) Thread(2, 2) Thread(3, 2)



CUDA Blocks Map to GPU SM

The whole CUDA program runs on whole GPU, while a block runs on a single SM
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Grid

Block(0, 0) Block(1, 0) Block(2, 0)

Block(0, 1) Block(1, 1) Block(2, 1)

Block(1, 1)

Thread(0, 0) Thread(1, 0) Thread(2, 0) Thread(3, 0)

Thread(0, 1) Thread(1, 1) Thread(2, 1) Thread(3, 1)

Thread(0, 2) Thread(1, 2) Thread(2, 2) Thread(3, 2)



Grid, Block, and Thread

• gridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block

• threadIdx: The thread index within a block

28



SIMT: Divergent Execution Overhead 
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__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function



SIMT: Divergent Execution Overhead 
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__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function

⇒



SIMT: Divergent Execution Overhead 
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__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function
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T T F T F F F F

Thread

⇒



SIMT: Divergent Execution Overhead 
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__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function
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2 3 4 5 6 7 8

T T F T F F F F

Thread

⇒

Not all thread / ALU is running



SIMT: Divergent Execution Overhead 

33

__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function

1

Ti
m

e 
(C

yc
le

)

2 3 4 5 6 7 8

T T F T F F F F

Thread



SIMT: Divergent Execution Overhead 
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__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function
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T T F T F F F F

Thread



Terminology

Coherence execution

• Same instruction sequence applies to all elements

• Necessary for efficient use of GPUs

Divergent execution

• A lack of coherence execution

• Should be minimized in CUDA programs

35
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04
CUDA Program Execution



CUDA Compilation

• Goal: run the same CUDA program on various GPUs

38

Mid-range GPU (6 cores)

High-end GPU (12 cores)



CUDA Thread Block Scheduling

• Major CUDA assumption: thread blocks

can be executed in any order (no

dependencies between thread blocks)

• GPU maps thread blocks to cores using a

dynamic scheduling policy that respects

resource requirements.

40

Thread block scheduler

Device Global Memory (GRAM)



CUDA Thread Scheduling

41
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Thread 1 2 31… 32 63… 64 95… …33 65

Warp: Groups of 32 CUDA 
threads in a thread block are 
executed simultaneously

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle



CUDA Thread Scheduling
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0

Ti
m

e 
(C
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le

)

Thread 1 2 31… 32 63… 64 95… …33 65

At most 32 threads can run 
simultaneously, while other 
threads need to wait until 
running threads finished

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle



CUDA Thread Scheduling
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Thread 1 2 31… 32 63… 64 95… …33 65

The previous threads are all 
finished, now GPU can 
schedule another warp

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle



CUDA Thread Scheduling
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Thread 1 2 31… 32 63… 64 95… …33 65

Like thread block scheduling, 
thread inside a block can be 
executed in any order.

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle

The warp scheduler can pick 
any waiting warps. Here it 
pick warp 2 



CUDA Thread Scheduling
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0
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Thread 1 2 31… 32 63… 64 95… …33 65

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle

A warp is complete if and 
only if all 32 threads are 
complete.



CUDA Thread Scheduling
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Thread 1 2 31… 32 63… 64 95… …33 65

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle

⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮ ⋮



Recap: Divergent Execution Overhead 
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__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function
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(C

yc
le

)
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T T F T F F F F

Thread

The divergent overhead only happens inside a warp, but not across all threads



More Complicated Scheduling in Modern GPUs

48

Different kinds on ALUs support 
out-of-order execution 4 Warp can be running on a SM at the same time
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