System for Artificial Intelligence

GPU Architecture & CUDA Programming

Siyuan Feng
Shanghai Innovation Institute

' Recap: Overview of Machine Learning Systems Lo e
g ML Models

Automatic Differentiation
Graph Optimization

Parallelism / Distributed

Hardware Acceleration

N o o

This Lecture

NVIDIA GPU , HUAWEI NPU Mobile devices A
N - - 2

\ 4
oom mm mm mim

@ » Parallel Computing @ » GPU Architectures

@ » CUDA Programming @ » CUDA Execution

¢
Parallel Computing

y N .

' SISD: Single Instruction, Single Data Lt i&ol 8 ZF kR

Shanghai Innovation Institute
Instruction
Fetch / Decode
ALU
(Execute)
Exec Context
(Registers)

Conventional single instruction,
single data processor

L is el 8 ZF Mk

Shanghai Innovation Institute

SIMD: Single Instruction, Multiple Data
Instruction Instruction
Fetch / Decode Fetch / Decode
¥ 4
Al o aw s fow 2w
(Execute)
¥

| ALUARJALUSJALU 6 ALU 7
Exec Context

Exec Context
(Registers) (Registers)

Conventional single instruction, Modern single instruction,
single data processor multiple data processor

g el 8 F bk

Shanghai Innovation Institute

SIMD: Single Instruction, Multiple Data

Instruction
Fetch / Decode

e Same instruction broadcast and executed ALUONALU 1JALU 2] ALU 3
in parallel on all ALUs atualaw sHaw el a7

 Add ALUs to increase compute capability

Exec Context
 Usually used as Vectorize (Registers)

Modern single instruction,
multiple data processor

L is el 8 ZF Mk

Shanghai Innovation Institute

SIMT: Single Instruction, Multiple Thread
Instruction Instruction
Fetch / Decode Fetch / Decode
4

ALU
(E te) ALUOJALU1JALU2QALU3
xecute

Exec Context
(Registers)

—

Conventional single instruction, Modern single instruction,
single data processor multiple thread GPUs

g el 8 F bk

Shanghai Innovation Institute

' SIMT: Single Instruction, Multiple Thread
Instruction
Fetch / Decode
4
oot

* One of the subcategories of SIMD

* Each ALU has its own separate register file

e Usually used in modern GPGPU

Modern single instruction,
multiple thread GPUs

’J:iﬁﬁ']%“%‘r—lﬁ

Shanghai Innovation Institute

MIMD: Multiple Instruction, Multiple Data

Inst § Inst § Inst § Inst

Instruction
Fetch / Decode

¥ A S 4
A

—

(E LUt) ALU 1§ ALU 2gALU 3
Xxecute

Exec Context
(Registers)

Conventional single instruction, Modern multiple instruction,
single data processor multiple data processor

g el 8 F bk

Shanghai Innovation Institute
Instruction
Fetch / Decode

|
Thread Thread Thread Thread : ALUORALU 1gALU 2§ ALU 3
: ALU4ARBALUSBALUGQR ALU 7

Massive Parallel Computing Units in GPGPU

Instruction
Fetch / Decode

3 88 N

1
I
I

"\

\ Exec Context
. (Registers)

\ HlEEEEEN
\ HEEEEEEN
\ HEEEEEEEE
\ HEEEEEEN

Modern GPU ', Streaming Multiprocessor ' Each thread in SM

\ \

MIMD multi-Core processor SIMT streaming multiprocessor SIMD thread

02

GPU Architectures

y N <,

H100 Architecture with Tensor Cores LB EE F K

Shanghai Innovation Institute

PCI Express 5.0 Host Interface

GigaThread Engine with MIG Control

GPC

PC
su s1

Memory Controller
Jajjonuo) Aloway

Memory Controller
191101U0) Aloway

Memory Controller
12jj0nu0) Aiowaw

S H
[3
2 3
S ~
o 2]
2 g
o =
E S
= g

Memory Controller
J3jjonuo) Kowap

SM SM M
TPC TPC TPC

Memory Cuntroller
12|101U0) Alowaly

1+ 1+ 1 1+ 1 1 T+ T+ — 1 1 T+ 1 {13 T+ T+ 1+
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink

GH100 Full GPU with 144 SMs, while H100 SMX has only 132 SMs

H100 Streaming Multiprocessor

g el 8 F bk

Shanghai Innovation Institute

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Tensor Memory Accelerator (TMA), highly efficient,
asynchronous, and bi-directional transfer of multi-
dimensional tensors between global memory and
shared memory

FP32
FPa2
FPa2
FPaz2
FP32
FP3z2
FP32
FP32
FP32
FPaz2
FPa2
FP32
FP32
FP32
FP32
FP32

FP&4
FP&4
FPE4
FPE4
FP&4
FP&4
FPe4
FPe4
FP&4
FP&4
FPE4
FPE4
FP&4
FP64
FPe4
FPe4

TENSOR CORE
4" GENERATION

FP32
FP32
FP22
FP32
FP32
FPaz
FPa2
FPa2
FP32
FPa2
FPa2
FP32
FP32
FPa2
FPa2
FPa2

LD LDy
ST 8T

FP&4
FPe4
FPe4
FP&d
FP84
FPe4
FP8d

TENSOR CORE
4™ GENERATION

LD LD L
ST ST ST SFU

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

L0 Instruction Cache
Warp Scheduler (32 threadiclk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32 Register File (16,384 x 32-bit)

Shared Memory / L1 Data Cache <«

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FPaz

(W]
8T 8T

FP&4
FP&4
FP&4
FP&4
FPE4
FP64
FP&4
FP&4
FP64
FPE4
FP&4
FP&4
FP&4
FP64
FP&4
FP&4

LoV

ST

TENSOR CORE
4" GENERATION

(1T T) SFU

ST ST ST

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex

INT32
INT32
INT32
INT32
INT32
INT3Z
INT32
INT32
INT32
INT32
INT32
INT32
INT32Z
INT32
INT32
INT32

Loy
ST

FP32
FP32
FP32
FP32
FP32
FP32
FPa2
FP32
FP32
FP32
FP32
FP32
FP32
FPa2
FP32
FP32
L

Tex

FP84

FP64
FP84
FP64
FP84
FP84
FP64
FP84
FP84
FP84
FP84
FP64
FP84
FP64

TENSOR CORE
4™ GENERATION

[T TR T SFU

ST ST

H100 Streaming Multiprocessor

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4™ GENERATION

LD/ LD/

ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 FP64
FP32 FP&4
FPa2 FP&4
FPaz2 FP&d
FP32 FP&4
FP3z2 FP&4
FP32 FP&4
FP32 FP64

TENSOR CORE

FP32 FPE4 4™ GENERATION

FP32 FP84
FP3" FPE4
FP32 FPEd
FP32 b4
FP32 FP64
FPa2 FP84
FP32 FP84

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 FPE4
FP32 FPE4
FP32 FP&4
FP32 FP&4
FPa2 FP&4
FP32 FPG4
FP32 FP&4
FP32 FP&4

INT32
INT32
INT32
INT32
INT32
INT3Z
INT32

TENSOR CORE INT32

FP32 FPE4 4™ GENERATION INT32

FP32 FP&4
FP32 FP&4
FP32 FP&4
FP32 FPB4
FP32 FPG4
FP32 FPa4
FP32 FPB4

WV WV L U DY
ST ST ST ST 8T

INT32
INT32
INT32
INT32Z
INT32
INT32
INT32

SFU o

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FPe4
FP32 FP32 FPe4
FP32 FP32 FP&d
FP3Z2 FP32 P84
FP32 FP32 P84
FP32 FP32 FP8d
FP32 FP32 FP8d

g 8§ F B

Innovation

TENSOR CORE

FP32 FP32 FPe4 4™ GENERATION

FP32 FP32]
FP32 FP32 FP&4
FP32 FPI2 FP&4
FP32 FP32 FPE4
FP32 FP32 FPE4
FP32 FP32 FP&4
FP32 FP32 FP&4

W L LDf L LD LD LD
ST 8T ST ST ST ST ST

L0 Instruction Cache
Warp Scheduler (32 threadiclk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 FP32 FP84
FP32 FP32 FP84
FP32 FP32 FP84
FP32 FP32 FPE4
FP32 FP32 FP84
FP32 2 FP64
FP32 2 FP84
FP32 FP84

TENSOR CORE

FPa2 FP64 4™ GENERATION

FP32 FP84
FP32 FP84
FP32 FP84
FP32 FP32 FP84
FP32 FP32 FP84
FP32 FP32

FP32 FP32

LV LD LD T TR
ST ST ST ST ST

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex

Tex

SFU

Institute

H100 Streaming Multiprocessor

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

LD/
ST

TENSOR CORE
4™ GENERATION

LD/ LD/
ST ST SFU

}‘

CUDA Cores (Scalar ALUs)
managed by 32 CUDA threads

g el 8 F bk

Shanghai Innovation Institute

g el 8 F bk

Shanghai Innovation Institute

o

H100 Streaming Multiprocessor

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 D —

INT32 FP32 FP32 FP64 -

INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64

INT32 FP32 FP32 L HMMA FP16 or FP32 FP16 FP16 FP16 or FP32
INT32 FP32 FP32 FP64 IMMA INT32 INT8 or UINTS INT8 or UINTS INT32

INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 TENSOR CORE

INT32 FP32 FP32 FP64 4" GENERATION)
— 1 — T ™ — Tensor Cores, used for matrix multiplication

INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST

¢
CUDA Programming Abstractions

y N <,

v

Basic CUDA syntax

Host program: running as part of normal C/C++ application on CPU

Host

Device

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

/

__global _ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],

float C[Ny]J[Nx]) {
blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

int i
int j

} C[3I[1] = A[3I[1i] + B[J]I[i];

CUDA kernel: executed in parallel on multiple SMs

Crsauszp
" ﬁi‘@J %% g B

Shanghai Innovation Institute

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

__global _ denotes a CUDA kernel runs
on GPU

Each thread computes its overall grid thread id
from its position in its block (threadldx) and its
block’s position in the grid (blockldx)

y

N

Y 4

Clear Separation of Host and Device Code f L s el 8%k

Host

Device

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device__ float doubleValue(float x)
{

}
__global__ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],

float C[Ny][Nx]) {
blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

return 2 * x;

int i
int j

C[JI[i] = A[3I[1] + B[JI[1i];

Shanghai Innovation Institute

Separation of execution into host and device
code is performed statically by the programmer

Function without any attribute runs on
Host as common C++ program

__global _ denotes a CUDA kernel runs
on GPU

__device__ denotes a CUDA function
that can be called from device or global
function

Host

Device

CUDA Memory Model

Host Device (CPU)

Host memory address space

CUDA Device (GPU)

CUDA device memory address space

Lt s s 2R

Shanghai Innovation Institute

Distinct host and device address spaces:
e Cannot access host memory from device

e Cannot access device memory from host

Host

Device

Case Study: Minimal Example

Host Device (CPU)

Host memory address space

g el 8 F bk

Shanghai Innovation Institute

CUDA Device (GPU)

CUDA device memory address space

float* A = new float[N];

for (int 1=0 i<N; i++) « ___ |pjt data on host device
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;

cudaMalloc(&deviceA, bytes);

cudaMemcpy (deviceA, A, bytes, cudaMemcpyHostToDevice);

Host

Device

cudaMalloc: Allocate Memory Space on Device L 58l 8 ZF kK

Host Device (CPU)

Host memory address space

Shanghai Innovation Institute

CUDA Device (GPU)

CUDA device memory address space

float* A = new float[N];

for (int i=0@ i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;

cudaMalloc (&deviceA, bytes);

cudaMemcpy (deviceA, A, bAtes, cudaMemcpyHostToDevice);

|

Allocate memory with specific size on device,
and store the pointer to "deviceA’

Host

Device

cudaMemcpy: Move Data Between Host and Device Lol w2 R

Host Device (CPU)

Host memory address space

Shanghai Innovation Institute

CUDA Device (GPU)

CUDA device memory address space

float* A = new float[N];

for (int i=0@ i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;

cudaMalloc(&deviceA, bytes);

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

/

Copy data from host to device

NOTE:
1. deviceA[i] is an invalid operation on host side
2. cudaMemcpy also support copy from device to host

v

Basic CUDA Syntax

Host program: running as part of normal C/C++ application on CPU

Host

Device

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

/

__global _ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],

float C[Ny]J[Nx]) {
blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

int i
int j

} C[3I[1] = A[3I[1i] + B[J]I[i];

CUDA kernel: executed in parallel on multiple SMs

Crsauszp
" ﬁi‘@J %% g B

Shanghai Innovation Institute

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

__global _ denotes a CUDA kernel runs
on GPU

Each thread computes its overall grid thread id
from its position in its block (threadldx) and its
block’s position in the grid (blockldx)

y

N

v 4

CUDA Programs Consist of a Hierarchy of Threads

E Bt 8 F Kk

Shanghai Innovation Institute

¥

threadIdx and blockIdx are up to 3-dimensional (2D example below)

Grid
Block(0, 0) Block(1, 0) Block(2, 0)
Block(0,1) -1 | Block(1,1) | T~ Block(2, 1)

N
~

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Block(1, 1)

Thread(0, 0)

v

Thread(1, 0)

v

Thread(2, 0)

v

Thread(3, 0)

v

Thread(0, 1)

Thread(1, 1)

v

Thread(2, 1)

v

Thread(3, 1)

v

Thread(0, 2)

Thread(1, 2)

v

Thread(2, 2)

v

Thread(3, 2)

v

N

CUDA Blocks Map to GPU SM

"

The whole CUDA program runs on whole GPU, while a block runs on a single SM

Grid

Block(O, 0)

(LA

Block(1, 0) Block(2, 0)

(LML (

Block(0, 1) - |

Block(1,1) | |~ Block(2, 1)

(UL

Block(1, 1)

v

Thread(0, 0) | Thread(1, 0) | Thread(2, 0)

v v

Thread(3, 0)

\

y

Thread(0, 1) | Thread(1, 1) | Thread(2, 1)

v v

Threa

d(3, 1)

v

Thread(0, 2) | Thread(1, 2) | Thread(2, 2)

Threa

d(3, 2)

TENSOR CORE
4" GENERATION

TENSOR CORE
4" GENERATION

E Bt 8 F Kk

Shanghai Innovation Institute

TENSOR CORE
4" GENERATION

TENSOR CORE
4" GENERATION

Grid, Block, and Thread

gridDim: The dimensions of the grid
blockldx: The block index within the grid
blockDim: The dimensions of a block

threadldx: The thread index within a block

gridDim .y

«

’

g el 8 F bk

Shanghai Innovation Institute

CUDA Grid
blockldx (0,0) blockldx (1,0) blockidx (2,0)
.| eo|0oleal |eolooleol (00f0.0]0
% on|on|an % on|on{en % on|on|an
o o o
©,2|0,2|22 ©02|0.2|2 ©0,2|0.2|@2
blockDim x blockDim x blockDim x
blockldx (0, 1) blockldx (1,1) blockldx (2,1)
> ©,0| 0,0 | 2,0 > ©,0|0,0(@0 > 0,0 (0,00
% on|on|an 3 on|on|an g on|on|an
el
©,2]|0,2|22 ©2|0.2|22 ©02|0,2|@2
blockDim x blockDim x blockDim x
blockldx (0,2) blockldx (1,2) blockldx (2,2)
~|Col0oleal |00 @0 § 0,0 (0,00
§ on|on|an % on|on|en ‘Q on|on|an
o o o
©2|0,2|@2 ©2|0.2|c2 ©02|0,2|@2
blockDim x blockDim x blockDim x
gridDim.x .

V o

v,

Thread 1 2 3 4 5 6 7 8

MT: Divergent Execution Overhead L& el 8%k

Shanghai Innovation Institute

__global void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
float x = A[i];

g if (x > 0) {
Ei X = 2.0f * x;
= } else {
= X = exp(x, 5.0f);
= }
A[i] = x;

Kernel function

' SIMT: Divergent Execution Overhead £ 3 el 82k

Shanghai Innovation Institute

Thread 1 2 3 4 5 6 7 8

__global void f(float A[N]) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
= float x = A[i];

g if (x > 0) {
Ei X = 2.0f * x;
= } else {
= X = exp(x, 5.0f);
= }
A[i] = x;

}

Kernel function

' SIMT: Divergent Execution Overhead LBl s 2R

Shanghai Innovation Institute

Thread 1 2 3 4 5 6 7 8

__global void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
float x = A[i];

) = if (x > 0) {
Ei X = 2.0f * x;
= } else {
= X = exp(x, 5.0f);
= }
A[i] = x;
}

Kernel function

' SIMT: Divergent Execution Overhead Lis el w2

Thread 1 2 3 4 5 6 7 8

Time (Cycle)

Shanghai Innovation Institute

T[T

}

global _ void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
float x = A[i];
if (x > 9) {

} else {

X = exp(x, 5.0f);
}
Ali] = x;

Not all thread / ALU is running

Kernel function

' SIMT: Divergent Execution Overhead £ 3 el 82k

Shanghai Innovation Institute

Thread 1 2 3 4 5 6 7 8

__global void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
T T F T F F F F float x = A[i];

if (x > 0) {
x = 2.0f * x;
} else {
X = exp(x, 5.6f);
}
A[i] = x;
}

Kernel function

Time (Cycle)

' SIMT: Divergent Execution Overhead £ 3 el 82k

Shanghai Innovation Institute

Thread 1 2 3 4 5 6 7 8

__global void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
T T F T F F F F float x = A[i];

if (x > 0) {
x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;
}

Kernel function

Time (Cycle)

v 4

Terminology " LB el 8 F bk

Shanghai Innovation Institute

Coherence execution

 Same instruction sequence applies to all elements

* Necessary for efficient use of GPUs

Divergent execution
* A lack of coherence execution

* Should be minimized in CUDA programs

¢

04

CUDA Program Execution

y N <,

.

e Goal: run the same CUDA program on various GPUs

UDA Compilation

g el 8 F b

Shanghai Innovation Institute

\ \
L

\ \
L

\ |
L

\ \
L

| \
L

| \
L

| \
.

[\
e

[\
e

[|
L

[\
e

| \
e

| \
e

| \
S

Mid-range GPU (6 cores)

[\
—

[\
S

[|
L

[|
L

High-end GPU (12 cores)

'

v 4

CUDA Thread Block Scheduling

* Major CUDA assumption: thread blocks
can be executed in any order (no

dependencies between thread blocks)

* GPU maps thread blocks to cores using a
dynamic scheduling policy that respects
resource requirements.

"

Thread block scheduler

g el 8 F bk

Shanghai Innovation Institute

[o o] [[T [[o

0 o o

|
|||

|
| I

(|-

Ll

LI

|

|

| |
o I
| o o [o |
I |

|
O
O
|

|
O
O
|

shared memory

shared memory

shared memory

I

I

I

Device Global Memory (GRAM)

V o

v 4

CUDA Thread Scheduling

Warp 0 Warp 1 Warp 2
A A A
4 N7 N/ A\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 . 95

Time (Cycle)

Waiting Running Complete Idle

Crsauszp

Shanghai Innovation Institute

Warp: Groups of 32 CUDA
threads in a thread block are
executed simultaneously

S

CUDA Thread Scheduling

Warp 0 Warp 1 Warp 2
A
- N\ N\
Thread 0 1 2 31 32 33 63 64 65 95
)
O
>
&
)
£
|_
v
Waiting Running Complete Idle

SLﬁﬂgﬁﬁ

Shanghai Innovation Institute

At most 32 threads can run
simultaneously, while other
threads need to wait until
running threads finished

42

' CUDA Thread Scheduling

Warp 0 Warp 1 Warp 2
A A A
r N\ N\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 95

Time (Cycle)

Waiting . Running . Complete

Idle

g el 8 F bk

Shanghai Innovation Institute

The previous threads are all
finished, now GPU can

schedule another warp

A

v

° P - =
CUDA Thread Scheduling :: R
Warp 0 Warp 1 Warp 2
A A A
4 A4 N/ A\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 . 95

Like thread block scheduling,
thread inside a block can be
executed in any order.

The warp scheduler can pick
any waiting warps. Here it
pick warp 2

Time (Cycle)

Waiting Running Complete Idle
44

' CUDA Thread Scheduling £Be s F R

Shanghai Innovation Institute

Warp 0 Warp 1 Warp 2
A A A
4 N7 N/ A\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 .. 95

A warp is complete if and
only if all 32 threads are
complete.

Time (Cycle)

Waiting . Running . Complete Idle

' CUDA Thread Scheduling

Warp 0 Warp 1 Warp 2
A A A
4 N7 N/ A\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 .. 95

Time (Cycle)

Waiting . Running . Complete Idle

L is el 8 ZF Mk

Shanghai Innovation Institute

' Recap: Divergent Execution Overhead LB e’ Pk

Shanghai Innovation Institute

Thread 1 2 3 4 5 6 7 8

__global void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
T T F T F F F F float x = A[i];

if (x > 9) {
x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;
}

Kernel function

Time (Cycle)

\4

The divergent overhead only happens inside a warp, but not across all threads A

g el 8 F bk

Shanghai Innovation Institute

More Complicated Scheduling in Modern GPUs ¢

L0 Instruction Cache L0 Instruction Cache
‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP32 FP32 FP64 FP32 FP32 FP84
2 FPI2 FP32 FPe4 FP32 FP32 FP&4
2 FPI2 FP32 FPe4 FP32 FP32 FP64

FP6d FP32 FP32 FP&4

FP&4 FP3I2 FPI2 FP&4

FPe4 FP32 FPa2 FP84

FPad FPa2 FP32 FP64

FP64 TENSOR CORE FP32 FP3Z FP64 TENSOR CORE

Register File (16,384 x 32-bit)

FPe4 4" GENERATION FP32 FP32 FP&4 4™ GENERATION

2 FP32 FPE4 FPI2 FP32 FP64
2 FPR2 FPE4 FPI2 FP32 FP&4
2 FP32 FPE4 FP32 FP32]
FP64 FP32 FP32 FP84
FP64 FP32 FP32 P84
FP84 FP32 FP32 FP&d
FPe4 FP32 FP32 FPed

N LoV Lor Lov Lo Lov Lo Lo

8T 8T 8T 8T 8T sT sT

INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64

LO Instruction Cache L0 Instruction Cache
‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP32 FP32 FP&4 INT32 FP32 FP32 FPe4
FP32 FP32 FP&4 INT32 FP32 FP32 FP&4
FP32 FP32 FP&4 INT32 FP32 FP32 FP84
FP32 FP32 FPB4 INT32 FP32 FP32 FP84
2 FP32 FP32 FP&4 INT32 FP32 2 FP&4
FP32 FP32 FP64 INT32 FP32 2 FP&4
FP32 FP32 FP&4 INT32 FP32 2 FP&4
FP32 FP32 FP84 TENSOR CORE INT32 FP32 2 FPg4 TENSOR CORE
FP32 FPE4 4™ GENERATION INT32 FP32 2 FP84 4" GENERATION
FP32 FP&4 INT32 FP32 2 FP&4
FP32 FP&4 INT32 FP32 2 FP84
FP32 FP&4 INT32 FP32 FPI2 FP&4
FP32 FP&4 INT3Z FP32 FP32 FP&4
FP32 FP64 INT32 FP32 FP32 FP64
FPaz FPe4 INT3Z FP32 FP32 FPB4
FP32 FP&4 INT32 FP32 FP32 FP84

N LoV LoV Lo Lo Loy v Lo Lo Lo ;) 2 i o Lo
5T &7 T &1 &1 s7 | oFU ST ST st ST st sr st st U

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
SFU

ST ST ST ST ST ST ST ST Tensor Memory Accelerator

256 KB L1 Data Cache / Shared Memory

Tex Tex

Different kinds on ALUs support
out-of-order execution 4 Warp can be running on a SM at the same time, \

y
Acknowledgement S LEoEsR

Shanghai Innovation Institute

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and
institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.
- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely
our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

49

System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute

	Slide 1: GPU Architecture & CUDA Programming
	Slide 2: Recap: Overview of Machine Learning Systems
	Slide 3
	Slide 4
	Slide 5: SISD: Single Instruction, Single Data
	Slide 6: SIMD: Single Instruction, Multiple Data
	Slide 7: SIMD: Single Instruction, Multiple Data
	Slide 8: SIMT: Single Instruction, Multiple Thread
	Slide 9: SIMT: Single Instruction, Multiple Thread
	Slide 10: MIMD: Multiple Instruction, Multiple Data
	Slide 11: Massive Parallel Computing Units in GPGPU
	Slide 12
	Slide 13: H100 Architecture with Tensor Cores
	Slide 14: H100 Streaming Multiprocessor
	Slide 15: H100 Streaming Multiprocessor
	Slide 16: H100 Streaming Multiprocessor
	Slide 17: H100 Streaming Multiprocessor
	Slide 18
	Slide 19: Basic CUDA syntax
	Slide 20: Clear Separation of Host and Device Code
	Slide 21: CUDA Memory Model
	Slide 22: Case Study: Minimal Example
	Slide 23: cudaMalloc: Allocate Memory Space on Device
	Slide 24: cudaMemcpy: Move Data Between Host and Device
	Slide 25: Basic CUDA Syntax
	Slide 26: CUDA Programs Consist of a Hierarchy of Threads
	Slide 27: CUDA Blocks Map to GPU SM
	Slide 28: Grid, Block, and Thread
	Slide 29: SIMT: Divergent Execution Overhead
	Slide 30: SIMT: Divergent Execution Overhead
	Slide 31: SIMT: Divergent Execution Overhead
	Slide 32: SIMT: Divergent Execution Overhead
	Slide 33: SIMT: Divergent Execution Overhead
	Slide 34: SIMT: Divergent Execution Overhead
	Slide 35: Terminology
	Slide 36
	Slide 38: CUDA Compilation
	Slide 40: CUDA Thread Block Scheduling
	Slide 41: CUDA Thread Scheduling
	Slide 42: CUDA Thread Scheduling
	Slide 43: CUDA Thread Scheduling
	Slide 44: CUDA Thread Scheduling
	Slide 45: CUDA Thread Scheduling
	Slide 46: CUDA Thread Scheduling
	Slide 47: Recap: Divergent Execution Overhead
	Slide 48: More Complicated Scheduling in Modern GPUs
	Slide 49: Acknowledgement
	Slide 50: Thanks

