
System for Artificial Intelligence

GPU Architecture & CUDA Programming

Siyuan Feng

Shanghai Innovation Institute

Recap: Overview of Machine Learning Systems

2

Graph Optimization

Automatic Differentiation

Parallelism / Distributed

Hardware Acceleration

ML Models

NVIDIA GPU HUAWEI NPU Mobile devices

This Lecture

O U T L I N E

01 02

03 04

3

Parallel Computing

CUDA Programming

GPU Architectures

CUDA Execution

4

01
Parallel Computing

SISD: Single Instruction, Single Data

5

Conventional single instruction,
single data processor

Instruction
Fetch / Decode

ALU
(Execute)

Exec Context
(Registers)

SIMD: Single Instruction, Multiple Data

6

Instruction
Fetch / Decode

ALU
(Execute)

Exec Context
(Registers)

Conventional single instruction,
single data processor

Modern single instruction,
multiple data processor

Instruction
Fetch / Decode

Exec Context
(Registers)

ALU 0

ALU 4

ALU 1

ALU 5

ALU 2

ALU 6

ALU 3

ALU 7

SIMD: Single Instruction, Multiple Data

7

Modern single instruction,
multiple data processor

Instruction
Fetch / Decode

Exec Context
(Registers)

ALU 0

ALU 4

ALU 1

ALU 5

ALU 2

ALU 6

ALU 3

ALU 7

• Same instruction broadcast and executed
in parallel on all ALUs

• Add ALUs to increase compute capability

• Usually used as Vectorize

SIMT: Single Instruction, Multiple Thread

8

Instruction
Fetch / Decode

ALU
(Execute)

Exec Context
(Registers)

Conventional single instruction,
single data processor

Modern single instruction,
multiple thread GPUs

Instruction
Fetch / Decode

Reg

ALU 0 ALU 1 ALU 2 ALU 3

Reg Reg Reg

SIMT: Single Instruction, Multiple Thread

9

Modern single instruction,
multiple thread GPUs

Instruction
Fetch / Decode

Reg

ALU 0 ALU 1 ALU 2 ALU 3

Reg Reg Reg

• One of the subcategories of SIMD

• Each ALU has its own separate register file

• Usually used in modern GPGPU

MIMD: Multiple Instruction, Multiple Data

10

Instruction
Fetch / Decode

ALU
(Execute)

Exec Context
(Registers)

Conventional single instruction,
single data processor

Modern multiple instruction,
multiple data processor

Inst

Reg

ALU 0 ALU 1 ALU 2 ALU 3

Reg Reg Reg

Inst Inst Inst

Massive Parallel Computing Units in GPGPU

11

Inst

Ctx

SM 0 SM 1 SM 2 SM 3

Ctx Ctx Ctx

Inst Inst Inst

Modern GPU

MIMD multi-Core processor

Streaming Multiprocessor

Instruction
Fetch / Decode

Ctx

Thread
0

Thread
1

Thread
2

Thread
3

Ctx Ctx Ctx

SIMT streaming multiprocessor

Each thread in SM

Instruction
Fetch / Decode

Exec Context
(Registers)

ALU 0

ALU 4

ALU 1

ALU 5

ALU 2

ALU 6

ALU 3

ALU 7

SIMD thread

12

02
GPU Architectures

H100 Architecture with Tensor Cores

13
GH100 Full GPU with 144 SMs, while H100 SMX has only 132 SMsOne SM

H100 Streaming Multiprocessor

14

Shared Memory / L1 Data Cache

Tensor Memory Accelerator (TMA), highly efficient,
asynchronous, and bi-directional transfer of multi-
dimensional tensors between global memory and
shared memory

H100 Streaming Multiprocessor

15

H100 Streaming Multiprocessor

16

CUDA Cores (Scalar ALUs)
managed by 32 CUDA threads

H100 Streaming Multiprocessor

17

Tensor Cores, used for matrix multiplication

18

03
CUDA Programming Abstractions

Basic CUDA syntax

19

Host program: running as part of normal C/C++ application on CPU

CUDA kernel: executed in parallel on multiple SMs

const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],
float C[Ny][Nx]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

C[j][i] = A[j][i] + B[j][i];
}

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

Host

Device

__global__ denotes a CUDA kernel runs
on GPU

Each thread computes its overall grid thread id
from its position in its block (threadIdx) and its
block’s position in the grid (blockIdx)

Clear Separation of Host and Device Code

20

const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device__ float doubleValue(float x)
{
return 2 * x;

}
__global__ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],
float C[Ny][Nx]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

C[j][i] = A[j][i] + B[j][i];
}

Host

Device

__global__ denotes a CUDA kernel runs
on GPU

Separation of execution into host and device
code is performed statically by the programmer

__device__ denotes a CUDA function
that can be called from device or global
function

Function without any attribute runs on
Host as common C++ program

CUDA Memory Model

21

Host

Device

Host Device (CPU)

CUDA Device (GPU)

Host memory address space

CUDA device memory address space

Distinct host and device address spaces:

• Cannot access host memory from device

• Cannot access device memory from host

Case Study: Minimal Example

22

Host

Device

Host Device (CPU)

CUDA Device (GPU)

Host memory address space

CUDA device memory address space

float* A = new float[N];

for (int i=0 i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;
cudaMalloc(&deviceA, bytes);

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

Init data on host device

cudaMalloc: Allocate Memory Space on Device

23

Host

Device

Host Device (CPU)

CUDA Device (GPU)

Host memory address space

CUDA device memory address space

float* A = new float[N];

for (int i=0 i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;
cudaMalloc(&deviceA, bytes);

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

Allocate memory with specific size on device,
and store the pointer to `deviceA`

cudaMemcpy: Move Data Between Host and Device

24

Host

Device

Host Device (CPU)

CUDA Device (GPU)

Host memory address space

CUDA device memory address space

float* A = new float[N];

for (int i=0 i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;
cudaMalloc(&deviceA, bytes);

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

Copy data from host to device

NOTE:
1. deviceA[i] is an invalid operation on host side
2. cudaMemcpy also support copy from device to host

Basic CUDA Syntax

25

Host program: running as part of normal C/C++ application on CPU

CUDA kernel: executed in parallel on multiple SMs

const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__global__ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],
float C[Ny][Nx]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

C[j][i] = A[j][i] + B[j][i];
}

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

Host

Device

__global__ denotes a CUDA kernel runs
on GPU

Each thread computes its overall grid thread id
from its position in its block (threadIdx) and its
block’s position in the grid (blockIdx)

CUDA Programs Consist of a Hierarchy of Threads

threadIdx and blockIdx are up to 3-dimensional (2D example below)

26

const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Grid

Block(0, 0) Block(1, 0) Block(2, 0)

Block(0, 1) Block(1, 1) Block(2, 1)

Block(1, 1)

Thread(0, 0) Thread(1, 0) Thread(2, 0) Thread(3, 0)

Thread(0, 1) Thread(1, 1) Thread(2, 1) Thread(3, 1)

Thread(0, 2) Thread(1, 2) Thread(2, 2) Thread(3, 2)

CUDA Blocks Map to GPU SM

The whole CUDA program runs on whole GPU, while a block runs on a single SM

27

Grid

Block(0, 0) Block(1, 0) Block(2, 0)

Block(0, 1) Block(1, 1) Block(2, 1)

Block(1, 1)

Thread(0, 0) Thread(1, 0) Thread(2, 0) Thread(3, 0)

Thread(0, 1) Thread(1, 1) Thread(2, 1) Thread(3, 1)

Thread(0, 2) Thread(1, 2) Thread(2, 2) Thread(3, 2)

Grid, Block, and Thread

• gridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block

• threadIdx: The thread index within a block

28

SIMT: Divergent Execution Overhead

29

1

Ti
m

e
(C

yc
le

)

2 3 4 5 6 7 8Thread

__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function

SIMT: Divergent Execution Overhead

30

1

Ti
m

e
(C

yc
le

)

2 3 4 5 6 7 8Thread

__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function

⇒

SIMT: Divergent Execution Overhead

31

__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function

1

Ti
m

e
(C

yc
le

)

2 3 4 5 6 7 8

T T F T F F F F

Thread

⇒

SIMT: Divergent Execution Overhead

32

__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function

1

Ti
m

e
(C

yc
le

)

2 3 4 5 6 7 8

T T F T F F F F

Thread

⇒

Not all thread / ALU is running

SIMT: Divergent Execution Overhead

33

__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function

1

Ti
m

e
(C

yc
le

)

2 3 4 5 6 7 8

T T F T F F F F

Thread

SIMT: Divergent Execution Overhead

34

__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function

1

Ti
m

e
(C

yc
le

)

2 3 4 5 6 7 8

T T F T F F F F

Thread

Terminology

Coherence execution

• Same instruction sequence applies to all elements

• Necessary for efficient use of GPUs

Divergent execution

• A lack of coherence execution

• Should be minimized in CUDA programs

35

36

04
CUDA Program Execution

CUDA Compilation

• Goal: run the same CUDA program on various GPUs

38

Mid-range GPU (6 cores)

High-end GPU (12 cores)

CUDA Thread Block Scheduling

• Major CUDA assumption: thread blocks

can be executed in any order (no

dependencies between thread blocks)

• GPU maps thread blocks to cores using a

dynamic scheduling policy that respects

resource requirements.

40

Thread block scheduler

Device Global Memory (GRAM)

CUDA Thread Scheduling

41

0

Ti
m

e
(C

yc
le

)

Thread 1 2 31… 32 63… 64 95… …33 65

Warp: Groups of 32 CUDA
threads in a thread block are
executed simultaneously

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle

CUDA Thread Scheduling

42

0

Ti
m

e
(C

yc
le

)

Thread 1 2 31… 32 63… 64 95… …33 65

At most 32 threads can run
simultaneously, while other
threads need to wait until
running threads finished

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle

CUDA Thread Scheduling

43

0

Ti
m

e
(C

yc
le

)

Thread 1 2 31… 32 63… 64 95… …33 65

The previous threads are all
finished, now GPU can
schedule another warp

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle

CUDA Thread Scheduling

44

0

Ti
m

e
(C

yc
le

)

Thread 1 2 31… 32 63… 64 95… …33 65

Like thread block scheduling,
thread inside a block can be
executed in any order.

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle

The warp scheduler can pick
any waiting warps. Here it
pick warp 2

CUDA Thread Scheduling

45

0

Ti
m

e
(C

yc
le

)

Thread 1 2 31… 32 63… 64 95… …33 65

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle

A warp is complete if and
only if all 32 threads are
complete.

CUDA Thread Scheduling

46

0

Ti
m

e
(C

yc
le

)

Thread 1 2 31… 32 63… 64 95… …33 65

Warp 0 Warp 1 Warp 2

Waiting Running Complete Idle

⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮ ⋮

Recap: Divergent Execution Overhead

47

__global__ void f(float A[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
float x = A[i];
if (x > 0) {

x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;

}

Kernel function

1

Ti
m

e
(C

yc
le

)

2 3 4 5 6 7 8

T T F T F F F F

Thread

The divergent overhead only happens inside a warp, but not across all threads

More Complicated Scheduling in Modern GPUs

48

Different kinds on ALUs support
out-of-order execution 4 Warp can be running on a SM at the same time

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

49

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1: GPU Architecture & CUDA Programming
	Slide 2: Recap: Overview of Machine Learning Systems
	Slide 3
	Slide 4
	Slide 5: SISD: Single Instruction, Single Data
	Slide 6: SIMD: Single Instruction, Multiple Data
	Slide 7: SIMD: Single Instruction, Multiple Data
	Slide 8: SIMT: Single Instruction, Multiple Thread
	Slide 9: SIMT: Single Instruction, Multiple Thread
	Slide 10: MIMD: Multiple Instruction, Multiple Data
	Slide 11: Massive Parallel Computing Units in GPGPU
	Slide 12
	Slide 13: H100 Architecture with Tensor Cores
	Slide 14: H100 Streaming Multiprocessor
	Slide 15: H100 Streaming Multiprocessor
	Slide 16: H100 Streaming Multiprocessor
	Slide 17: H100 Streaming Multiprocessor
	Slide 18
	Slide 19: Basic CUDA syntax
	Slide 20: Clear Separation of Host and Device Code
	Slide 21: CUDA Memory Model
	Slide 22: Case Study: Minimal Example
	Slide 23: cudaMalloc: Allocate Memory Space on Device
	Slide 24: cudaMemcpy: Move Data Between Host and Device
	Slide 25: Basic CUDA Syntax
	Slide 26: CUDA Programs Consist of a Hierarchy of Threads
	Slide 27: CUDA Blocks Map to GPU SM
	Slide 28: Grid, Block, and Thread
	Slide 29: SIMT: Divergent Execution Overhead
	Slide 30: SIMT: Divergent Execution Overhead
	Slide 31: SIMT: Divergent Execution Overhead
	Slide 32: SIMT: Divergent Execution Overhead
	Slide 33: SIMT: Divergent Execution Overhead
	Slide 34: SIMT: Divergent Execution Overhead
	Slide 35: Terminology
	Slide 36
	Slide 38: CUDA Compilation
	Slide 40: CUDA Thread Block Scheduling
	Slide 41: CUDA Thread Scheduling
	Slide 42: CUDA Thread Scheduling
	Slide 43: CUDA Thread Scheduling
	Slide 44: CUDA Thread Scheduling
	Slide 45: CUDA Thread Scheduling
	Slide 46: CUDA Thread Scheduling
	Slide 47: Recap: Divergent Execution Overhead
	Slide 48: More Complicated Scheduling in Modern GPUs
	Slide 49: Acknowledgement
	Slide 50: Thanks

