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Instruction
Fetch / Decode
ALU
(Execute)
Exec Context
(Registers)

Conventional single instruction,
single data processor




L is el 8 ZF Mk

Shanghai Innovation Institute

SIMD: Single Instruction, Multiple Data
Instruction Instruction
Fetch / Decode Fetch / Decode
¥ 4
Al o aw s fow 2w
(Execute)
¥

| ALUARJALUSJALU 6 ALU 7
Exec Context

Exec Context
(Registers) (Registers)

Conventional single instruction, Modern single instruction,
single data processor multiple data processor
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SIMD: Single Instruction, Multiple Data

Instruction
Fetch / Decode

e Same instruction broadcast and executed ALUONALU 1JALU 2] ALU 3
in parallel on all ALUs atualaw sHaw el a7

 Add ALUs to increase compute capability

Exec Context
 Usually used as Vectorize (Registers)

Modern single instruction,
multiple data processor
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SIMT: Single Instruction, Multiple Thread
Instruction Instruction
Fetch / Decode Fetch / Decode
4

ALU
(E te) ALUOJALU1JALU2QALU3
xecute

Exec Context
(Registers)

—

Conventional single instruction, Modern single instruction,
single data processor multiple thread GPUs
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' SIMT: Single Instruction, Multiple Thread
Instruction
Fetch / Decode
4
oot

* One of the subcategories of SIMD

* Each ALU has its own separate register file

e Usually used in modern GPGPU

Modern single instruction,
multiple thread GPUs
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MIMD: Multiple Instruction, Multiple Data

Inst § Inst § Inst § Inst

Instruction
Fetch / Decode

¥ A S 4
A

—

(E LUt ) ALU 1§ ALU 2gALU 3
Xxecute

Exec Context
(Registers)

Conventional single instruction, Modern multiple instruction,
single data processor multiple data processor
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Instruction
Fetch / Decode

|
Thread Thread Thread Thread : ALUORALU 1gALU 2§ ALU 3
: ALU4ARBALUSBALUGQR ALU 7

Massive Parallel Computing Units in GPGPU

Instruction
Fetch / Decode
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\ Exec Context
. (Registers)
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Modern GPU ', Streaming Multiprocessor ' Each thread in SM

\ \

MIMD multi-Core processor SIMT streaming multiprocessor SIMD thread
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GPU Architectures
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H100 Architecture with Tensor Cores LB EE F K
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PCI Express 5.0 Host Interface

GigaThread Engine with MIG Control

GPC
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Memory Controller
Jajjonuo) Aloway

Memory Controller
191101U0) Aloway

Memory Controller
12jj0nu0) Aiowaw

S H
[ 3
2 3
S ~
o 2]
2 g
o =
E S
= g

Memory Controller
J3jjonuo) Kowap
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GH100 Full GPU with 144 SMs, while H100 SMX has only 132 SMs




H100 Streaming Multiprocessor
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L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Tensor Memory Accelerator (TMA), highly efficient,
asynchronous, and bi-directional transfer of multi-
dimensional tensors between global memory and
shared memory
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LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

L0 Instruction Cache
Warp Scheduler (32 threadiclk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32 Register File (16,384 x 32-bit)
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Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory
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H100 Streaming Multiprocessor

INT32
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INT32
INT32
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FP32
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LO Instruction Cache
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ST

TENSOR CORE
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ST ST

L0 Instruction Cache
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Register File (16,384 x 32-bit)
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L0 Instruction Cache
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TENSOR CORE
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H100 Streaming Multiprocessor
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CUDA Cores (Scalar ALUs)
managed by 32 CUDA threads
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H100 Streaming Multiprocessor

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 D —

INT32 FP32 FP32 FP64 -

INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64

INT32 FP32 FP32 L HMMA FP16 or FP32 FP16 FP16 FP16 or FP32
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INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 TENSOR CORE

INT32 FP32 FP32 FP64 4" GENERATION . . . . )
— 1 — T ™ — Tensor Cores, used for matrix multiplication
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Basic CUDA syntax

Host program: running as part of normal C/C++ application on CPU

Host

Device

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

/

__global _ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],

float C[Ny]J[Nx]) {
blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

int i
int j

} C[3I[1] = A[3I[1i] + B[J]I[i];

CUDA kernel: executed in parallel on multiple SMs

Crsauszp
" ﬁi‘@J %% g B

Shanghai Innovation Institute

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

__global _ denotes a CUDA kernel runs
on GPU

Each thread computes its overall grid thread id
from its position in its block (threadldx) and its
block’s position in the grid (blockldx)

y

N
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Clear Separation of Host and Device Code f L s el 8%k

Host

Device

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device__ float doubleValue(float x)
{

}
__global__ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],

float C[Ny][Nx]) {
blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

return 2 * x;

int i
int j

C[JI[i] = A[3I[1] + B[JI[1i];

Shanghai Innovation Institute

Separation of execution into host and device
code is performed statically by the programmer

Function without any attribute runs on
Host as common C++ program

__global _ denotes a CUDA kernel runs
on GPU

__device__ denotes a CUDA function
that can be called from device or global
function




Host

Device

CUDA Memory Model

Host Device (CPU)

Host memory address space

CUDA Device (GPU)

CUDA device memory address space

Lt s s 2R

Shanghai Innovation Institute

Distinct host and device address spaces:
e Cannot access host memory from device

e Cannot access device memory from host




Host

Device

Case Study: Minimal Example

Host Device (CPU)

Host memory address space

g el 8 F bk
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CUDA Device (GPU)

CUDA device memory address space

float* A = new float[N];

for (int 1=0 i<N; i++) « ___ |pjt data on host device
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;

cudaMalloc(&deviceA, bytes);

cudaMemcpy (deviceA, A, bytes, cudaMemcpyHostToDevice);




Host

Device

cudaMalloc: Allocate Memory Space on Device L 58l 8 ZF kK

Host Device (CPU)

Host memory address space

Shanghai Innovation Institute

CUDA Device (GPU)

CUDA device memory address space

float* A = new float[N];

for (int i=0@ i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;

cudaMalloc (&deviceA, bytes);

cudaMemcpy (deviceA, A, bAtes, cudaMemcpyHostToDevice);

|

Allocate memory with specific size on device,
and store the pointer to "deviceA’




Host

Device

cudaMemcpy: Move Data Between Host and Device Lol w2 R

Host Device (CPU)

Host memory address space

Shanghai Innovation Institute

CUDA Device (GPU)

CUDA device memory address space

float* A = new float[N];

for (int i=0@ i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA;

cudaMalloc(&deviceA, bytes);

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

/

Copy data from host to device

NOTE:
1. deviceA[i] is an invalid operation on host side
2. cudaMemcpy also support copy from device to host
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Basic CUDA Syntax

Host program: running as part of normal C/C++ application on CPU

Host

Device

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

/

__global _ void matrixAdd(float A[Ny][Nx],

float B[Ny][Nx],

float C[Ny]J[Nx]) {
blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

int i
int j

} C[3I[1] = A[3I[1i] + B[J]I[i];

CUDA kernel: executed in parallel on multiple SMs

Crsauszp
" ﬁi‘@J %% g B
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Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

__global _ denotes a CUDA kernel runs
on GPU

Each thread computes its overall grid thread id
from its position in its block (threadldx) and its
block’s position in the grid (blockldx)

y

N
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CUDA Programs Consist of a Hierarchy of Threads

E Bt 8 F Kk
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¥

threadIdx and blockIdx are up to 3-dimensional (2D example below)

Grid
Block(0, 0) Block(1, 0) Block(2, 0)
Block(0,1) -1 | Block(1,1) | T~ Block(2, 1)

N
~

const int Nx = 12;

const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Block(1, 1)

Thread(0, 0)

v

Thread(1, 0)

v

Thread(2, 0)

v

Thread(3, 0)

v

Thread(0, 1)

Thread(1, 1)

v

Thread(2, 1)

v

Thread(3, 1)

v

Thread(0, 2)

Thread(1, 2)

v

Thread(2, 2)

v

Thread(3, 2)

v

N




CUDA Blocks Map to GPU SM

"

The whole CUDA program runs on whole GPU, while a block runs on a single SM

Grid

Block(O, 0)

(LA

Block(1, 0) Block(2, 0)

(LML (

Block(0, 1) - |

Block(1,1) | |~ Block(2, 1)

(UL

Block(1, 1)

v

Thread(0, 0) | Thread(1, 0) | Thread(2, 0)

v v

Thread(3, 0)

\

y

Thread(0, 1) | Thread(1, 1) | Thread(2, 1)

v v

Threa

d(3, 1)

v

Thread(0, 2) | Thread(1, 2) | Thread(2, 2)

Threa

d(3, 2)

TENSOR CORE
4" GENERATION

TENSOR CORE
4" GENERATION

E Bt 8 F Kk
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TENSOR CORE
4" GENERATION

TENSOR CORE
4" GENERATION



Grid, Block, and Thread

gridDim: The dimensions of the grid
blockldx: The block index within the grid
blockDim: The dimensions of a block

threadldx: The thread index within a block

gridDim .y

«

’
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CUDA Grid
blockldx (0,0) blockldx (1,0) blockidx (2,0)
.| eo|0oleal |eolooleol (00f0.0]0
% on|on|an % on|on{en % on|on|an
o o o
©,2|0,2|22 ©02|0.2|2 ©0,2|0.2|@2
blockDim x blockDim x blockDim x
blockldx (0, 1) blockldx (1,1) blockldx (2,1)
> ©,0| 0,0 | 2,0 > ©,0|0,0(@0 > 0,0 (0,00
% on|on|an 3 on|on|an g on|on|an
el
©,2]|0,2|22 ©2|0.2|22 ©02|0,2|@2
blockDim x blockDim x blockDim x
blockldx (0,2) blockldx (1,2) blockldx (2,2)
~|Col0oleal |00 @0 § 0,0 (0,00
§ on|on|an % on|on|en ‘Q on|on|an
o o o
©2|0,2|@2 ©2|0.2|c2 ©02|0,2|@2
blockDim x blockDim x blockDim x
gridDim.x .

V o
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Thread 1 2 3 4 5 6 7 8

MT: Divergent Execution Overhead L& el 8%k
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__global  void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
float x = A[i];

g if (x > 0) {
Ei X = 2.0f * x;
= } else {
= X = exp(x, 5.0f);
= }
A[i] = x;

Kernel function
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Thread 1 2 3 4 5 6 7 8

__global  void f(float A[N]) {
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
= float x = A[i];

g if (x > 0) {
Ei X = 2.0f * x;
= } else {
= X = exp(x, 5.0f);
= }
A[i] = x;

}

Kernel function
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Thread 1 2 3 4 5 6 7 8

__global  void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
float x = A[i];

) = if (x > 0) {
Ei X = 2.0f * x;
= } else {
= X = exp(x, 5.0f);
= }
A[i] = x;
}

Kernel function
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Thread 1 2 3 4 5 6 7 8

Time (Cycle)

Shanghai Innovation Institute

T[T

}

global _ void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
float x = A[i];
if (x > 9) {

} else {

X = exp(x, 5.0f);
}
Ali] = x;

Not all thread / ALU is running

Kernel function
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Thread 1 2 3 4 5 6 7 8

__global  void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
T T F T F F F F float x = A[i];

if (x > 0) {
x = 2.0f * x;
} else {
X = exp(x, 5.6f);
}
A[i] = x;
}

Kernel function

Time (Cycle)
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Thread 1 2 3 4 5 6 7 8

__global  void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
T T F T F F F F float x = A[i];

if (x > 0) {
x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;
}

Kernel function

Time (Cycle)
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Terminology " LB el 8 F bk
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Coherence execution

 Same instruction sequence applies to all elements

* Necessary for efficient use of GPUs

Divergent execution
* A lack of coherence execution

* Should be minimized in CUDA programs
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CUDA Program Execution

y N <,




.

e Goal: run the same CUDA program on various GPUs

UDA Compilation

g el 8 F b
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CUDA Thread Block Scheduling

* Major CUDA assumption: thread blocks
can be executed in any order (no

dependencies between thread blocks)

* GPU maps thread blocks to cores using a
dynamic scheduling policy that respects
resource requirements.

"

Thread block scheduler

g el 8 F bk
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Device Global Memory (GRAM)
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CUDA Thread Scheduling

Warp 0 Warp 1 Warp 2
A A A
4 N7 N/ A\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 . 95

Time (Cycle)

Waiting Running Complete Idle

Crsauszp

Shanghai Innovation Institute

Warp: Groups of 32 CUDA
threads in a thread block are
executed simultaneously
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CUDA Thread Scheduling

Warp 0 Warp 1 Warp 2
A
- N\ N\
Thread 0 1 2 31 32 33 63 64 65 95
)
O
>
&
)
£
|_
v
Waiting Running Complete Idle

SLﬁﬂgﬁﬁ

Shanghai Innovation Institute

At most 32 threads can run
simultaneously, while other
threads need to wait until
running threads finished

42



' CUDA Thread Scheduling

Warp 0 Warp 1 Warp 2
A A A
r N\ N\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 95

Time (Cycle)

Waiting . Running . Complete

Idle

g el 8 F bk
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The previous threads are all
finished, now GPU can

schedule another warp

A
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° P - =
CUDA Thread Scheduling :: R
Warp 0 Warp 1 Warp 2
A A A
4 A4 N/ A\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 . 95

Like thread block scheduling,
thread inside a block can be
executed in any order.

The warp scheduler can pick
any waiting warps. Here it
pick warp 2

Time (Cycle)

Waiting Running Complete Idle
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Warp 0 Warp 1 Warp 2
A A A
4 N7 N/ A\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 .. 95

A warp is complete if and
only if all 32 threads are
complete.

Time (Cycle)

Waiting . Running . Complete Idle




' CUDA Thread Scheduling

Warp 0 Warp 1 Warp 2
A A A
4 N7 N/ A\
Thread @6 1 2 .. 31 32 33 .. 63 64 65 .. 95

Time (Cycle)

Waiting . Running . Complete Idle
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' Recap: Divergent Execution Overhead LB e’ Pk
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Thread 1 2 3 4 5 6 7 8

__global  void f(float A[N]) {

int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
T T F T F F F F float x = A[i];

if (x > 9) {
x = 2.0f * x;
} else {

x = exp(x, 5.0f);
}
A[i] = x;
}

Kernel function

Time (Cycle)

\4

The divergent overhead only happens inside a warp, but not across all threads A
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More Complicated Scheduling in Modern GPUs ¢

L0 Instruction Cache L0 Instruction Cache
‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP32 FP32 FP64 FP32 FP32 FP84
2 FPI2 FP32 FPe4 FP32 FP32 FP&4
2 FPI2 FP32 FPe4 FP32 FP32 FP64

FP6d FP32 FP32 FP&4

FP&4 FP3I2 FPI2 FP&4

FPe4 FP32 FPa2 FP84

FPad FPa2 FP32 FP64

FP64 TENSOR CORE FP32 FP3Z FP64 TENSOR CORE

Register File (16,384 x 32-bit)

FPe4 4" GENERATION FP32 FP32 FP&4 4™ GENERATION

2 FP32 FPE4 FPI2 FP32 FP64
2 FPR2 FPE4 FPI2 FP32 FP&4
2 FP32 FPE4 FP32 FP32 ]
FP64 FP32 FP32 FP84
FP64 FP32 FP32 P84
FP84 FP32 FP32 FP&d
FPe4 FP32 FP32 FPed

N LoV Lor Lov Lo Lov Lo Lo

8T 8T 8T 8T 8T sT sT

INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4" GENERATION
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64

LO Instruction Cache L0 Instruction Cache
‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP32 FP32 FP&4 INT32 FP32 FP32 FPe4
FP32 FP32 FP&4 INT32 FP32 FP32 FP&4
FP32 FP32 FP&4 INT32 FP32 FP32 FP84
FP32 FP32 FPB4 INT32 FP32 FP32 FP84
2 FP32 FP32 FP&4 INT32 FP32 2 FP&4
FP32 FP32 FP64 INT32 FP32 2 FP&4
FP32 FP32 FP&4 INT32 FP32 2 FP&4
FP32 FP32 FP84 TENSOR CORE INT32 FP32 2 FPg4 TENSOR CORE
FP32 FPE4 4™ GENERATION INT32  FP32 2 FP84 4" GENERATION
FP32 FP&4 INT32 FP32 2 FP&4
FP32 FP&4 INT32 FP32 2 FP84
FP32 FP&4 INT32 FP32 FPI2 FP&4
FP32 FP&4 INT3Z FP32 FP32 FP&4
FP32 FP64 INT32 FP32 FP32 FP64
FPaz FPe4 INT3Z FP32 FP32 FPB4
FP32 FP&4 INT32 FP32 FP32 FP84

N LoV LoV Lo Lo Loy v Lo Lo Lo ;) 2 i o Lo
5T &7 T &1 &1 s7 | oFU ST ST st ST st sr st st U

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
SFU

ST ST ST ST ST ST ST ST Tensor Memory Accelerator

256 KB L1 Data Cache / Shared Memory

Tex Tex

Different kinds on ALUs support
out-of-order execution 4 Warp can be running on a SM at the same time, \
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