
System for Artificial Intelligence

CUDA Programming Case Studies

Siyuan Feng

Shanghai Innovation Institute

Recap: H100 Streaming Multiprocessor

2

Recap: CUDA Blocks Map to GPU SM

The whole CUDA program runs on whole GPU, while a block runs on a single SM

3

Grid

Block(0, 0) Block(1, 0) Block(2, 0)

Block(0, 1) Block(1, 1) Block(2, 1)

Block(1, 1)

Thread(0, 0) Thread(1, 0) Thread(2, 0) Thread(3, 0)

Thread(0, 1) Thread(1, 1) Thread(2, 1) Thread(3, 1)

Thread(0, 2) Thread(1, 2) Thread(2, 2) Thread(3, 2)

O U T L I N E

01

02

4

Convolution 1D

Matrix Multiplication

5

01
Convolution 1D

CUDA Programming Example: 1D Convolution

6

output[i] = input[i] + input[i+1] + input[i+2];

Input
[0]

Input
[1]

Input
[2]

Input
[3]

Input
[4]

Input
[5]

Input
[6]

Input
[7]

Input
[8]

Output
[0]

Output
[1]

Output
[2]

Output
[3]

Output
[4]

Output
[5]

Output
[6]

… …

CUDA 1D Convolution - Naive

7

__global__ void conv1D(float* input, float* output, int N) {

int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= N) { return; } // check index range

float result = 0.0f;
for (int i = 0; i < 3; i++)
result += input[index + i];

output[index] = result; // write back to global memory
}

int N = 1024 * 1024, THREADS_PER_BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2)); // allocate
cudaMalloc(&devOutput, sizeof(float) * N); // allocate

// property initialize contents of devInput here ...

conv1D<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(devInput, devOutput, N);

Launch
`N/THREADS_PER_BLK` Blocks
`THREADS_PER_BLK` threads

each thread computes result for
one element

Recap: Memory Load Reuse

8

float A[n][n];
float B[n][n];
float C[n][n];

C[i][j] = sum(A[i][k] * B[j][k], axis=k)

Access of 𝐴 is independent of 𝑗,
tile the 𝑗 dimension by 𝑡 enables reuse of 𝐴 for 𝑡 times.

Recap: Shared Memory

9

Shared Memory / L1 Data Cache

CUDA 1D Convolution - Reused Shared Memory

10

__global__ void conv1D(float* input, float* output, int N) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= N) { return; } // check index range

__shared__ float smem[THREADS_PER_BLK+2]; // per-block allocation
smem[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
smem[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
result += smem[threadIdx.x + i];

output[index] = result / 3.f;
}

int N = 1024 * 1024, THREADS_PER_BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2)); // allocate
cudaMalloc(&devOutput, sizeof(float) * N); // allocate

// property initialize contents of devInput here ...

conv1D<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(devInput, devOutput, N);

each thread computes result for
one element

All threads cooperatively load
block’s support region from
global into shared memory
(total of 130 loads instead of 3 *
128 loads)

barrier (all threads in block)

CUDA 1D Convolution - Reused Shared Memory

11

__global__ void conv1D(float* input, float* output, int N) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= N) { return; } // check index range

__shared__ float smem[THREADS_PER_BLK+2]; // per-block allocation
smem[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
smem[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
result += smem[threadIdx.x + i];

output[index] = result / 3.f;
}

int N = 1024 * 1024, THREADS_PER_BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2)); // allocate
cudaMalloc(&devOutput, sizeof(float) * N); // allocate

// property initialize contents of devInput here ...

conv1D<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(devInput, devOutput, N);

Discussion: why need sync all threads?

Answer: Thread 0 depends on the
shared memory, which is load by
thread 1, so need to ensure all threads
finish reading

12

02
Matrix Multiplication

Naïve of Implementation Matrix Multiplication

13

A

B

C

__global__ void matmul(
float A[N][N], float B[N][N], float C[N][N]

) {

int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;

float result = 0;
for (int k = 0; k < N; ++k) {

result += A[x][k] * B[k][y];
}
C[x][y] = result;

}

Compute 𝐶 = 𝐴 × 𝐵

Each thread compute one element

Global memory access per thread: 2𝑁
Number of threads: 𝑁2

Total global memory access: 𝟐𝑵𝟑

Optimization 1: Thread-Level Register Tiling

14

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;

float c[V][V] = {0};
float a[V], b[V];
for (int k = 0; k < N; ++k) {
a[:] = A[xbase*V : xbase*V + V, k];
b[:] = B[k, ybase*V : ybase*V + V];
for (int y = 0; y < V; ++y) {
for (int x = 0; x < V; ++x) {
c[x][y] += a[x] * b[y];

}
}

}
C[xbase*V : xbase*V + V, ybase*V : ybase*V + V] = c[:];

}

Compute 𝐶 = 𝐴 × 𝐵

Each thread compute a 𝑉 × 𝑉 submatrix

A

B

C

Global memory access per thread: 2𝑁𝑉
Number of threads: (𝑁/𝑉)2

Total global memory access: 𝟐𝑵𝟑/𝑽

Optimization 2: Block-Level Shared Memory Tiling

15

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
__shared__ float sA[S][L], sB[S][L];
float c[V][V] = {0};
float a[V], b[V];
int yblock = blockIdx.y;
int xblock = blockIdx.x;

for (int ko = 0; ko < N; ko += S) {
__syncthreads();
sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];
sB[:, :] = B[k : k + S, xblock * L : xblock * L + L];
__syncthreads();
for (int ki = 0; ki < S; ++ ki) {
a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
b[:] = sB[ki, threadIdx.x * V : threadIdx.x * V + V];
for (int y = 0; y < V; ++y)
for (int x = 0; x < V; ++x)
c[y][x] += a[y] * b[x];

}
}
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];

}

Global memory access per thread block: 2𝐿𝑁
Number of thread blocks:

Total global memory access: 𝟐𝑵𝟑/𝑳

Shared memory access per thread: 2𝑉𝑁
Number of threads:
Total shared memory access: 𝟐𝑵𝟑/𝑽

16

03
Parallel Reduction

Parallel Reduction

• Common and important primitive used by many MLSys operators: normalization,

softmax, etc.

17

3 1 7 0 4 1 6 3

Sum = 25

Challenges of Parallel Reduction on GPU

• Task: for a large array of n elements, compute σ𝑖=1
𝑛 𝐴[𝑖]

• To achieve high GPU utilization

• Need to use multiple thread blocks (since a block is assigned to one SM)

• Each thread block reduces a portion of the array

• How to communicate partial results between thread blocks?

18

3 1 7 0 4 1 6 3

Sum = 25

Multiple Kernels

• Avoid global synchronization by decompose computation into

multiple kernel invocations

• Code for all levels is the same

19

Version 1: Interleaved Addressing

20

Version 1: Divergent Warps

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s=1 T F T F T F T F T F T F T F T F

s=2 T F F F T F F F T F F F T F F F

s=4 T F F F F F F F T F F F F F F F

s=8 T F F F F F F F F F F F F F F F

for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0)
sdata[tid] += sdata[tid + s];

__syncthreads();
}

Version 2: Strided Index and Non-divergent Warp

22

for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0)
sdata[tid] += sdata[tid + s];

__syncthreads();
}

for(unsigned int s=blockDim.x / 2; s > 0; s /= 2) {
if (threadIdx.x < s) {
sdata[threadIdx.x] += sdata[threadIdx.x + s];

}
__syncthreads();

}

Version 2: Non-Divergent Warps

23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s=8 T T T T T T T T F F F F F F F F

s=4 T T T T F F F F F F F F F F F F

s=2 T T F F F F F F F F F F F F F F

s=1 T F F F F F F F F F F F F F F F

for(unsigned int s=blockDim.x / 2; s > 0; s /= 2) {
if (threadIdx.x < s) {
sdata[threadIdx.x] += sdata[threadIdx.x + s];

}
__syncthreads();

}

Coalesced Memory Access

• Multiple GPU threads access consecutive memory addresses

• Maximize GPU memory bandwidth

24

Version 2: Sequential Addressing

25

Further Optimization

• Leverage Tensor Cores to speed up register level operation

• Leverage TMA to boost memory copy from global to shared memory

• Use swizzle to reduce bank conflict in shared memory

• Enable multi-stage software pipeline to hide data movement latency

• ...

26

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

27

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1: CUDA Programming Case Studies
	Slide 2: Recap: H100 Streaming Multiprocessor
	Slide 3: Recap: CUDA Blocks Map to GPU SM
	Slide 4
	Slide 5
	Slide 6: CUDA Programming Example: 1D Convolution
	Slide 7: CUDA 1D Convolution - Naive
	Slide 8: Recap: Memory Load Reuse
	Slide 9: Recap: Shared Memory
	Slide 10: CUDA 1D Convolution - Reused Shared Memory
	Slide 11: CUDA 1D Convolution - Reused Shared Memory
	Slide 12
	Slide 13: Naïve of Implementation Matrix Multiplication
	Slide 14: Optimization 1: Thread-Level Register Tiling
	Slide 15: Optimization 2: Block-Level Shared Memory Tiling
	Slide 16
	Slide 17: Parallel Reduction
	Slide 18: Challenges of Parallel Reduction on GPU
	Slide 19: Multiple Kernels
	Slide 20: Version 1: Interleaved Addressing
	Slide 21: Version 1: Divergent Warps
	Slide 22: Version 2: Strided Index and Non-divergent Warp
	Slide 23: Version 2: Non-Divergent Warps
	Slide 24: Coalesced Memory Access
	Slide 25: Version 2: Sequential Addressing
	Slide 26: Further Optimization
	Slide 27: Acknowledgement
	Slide 28: Thanks

