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Recap: H100 Streaming Multiprocessor
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Recap: CUDA Blocks Map to GPU SM

The whole CUDA program runs on whole GPU, while a block runs on a single SM

3

Grid

Block(0, 0) Block(1, 0) Block(2, 0)

Block(0, 1) Block(1, 1) Block(2, 1)

Block(1, 1)

Thread(0, 0) Thread(1, 0) Thread(2, 0) Thread(3, 0)

Thread(0, 1) Thread(1, 1) Thread(2, 1) Thread(3, 1)

Thread(0, 2) Thread(1, 2) Thread(2, 2) Thread(3, 2)



O U T L I N E

01

02

4

Convolution 1D

Matrix Multiplication
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Convolution 1D



CUDA Programming Example: 1D Convolution
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output[i] = input[i] + input[i+1] + input[i+2];

Input
[0]

Input
[1]

Input
[2]

Input
[3]

Input
[4]

Input
[5]

Input
[6]

Input
[7]

Input
[8]

Output
[0]

Output
[1]

Output
[2]

Output
[3]

Output
[4]

Output
[5]

Output
[6]

… …



CUDA 1D Convolution - Naive
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__global__ void conv1D(float* input, float* output, int N) {

int index = blockIdx.x * blockDim.x + threadIdx.x; 
if (index >= N) { return; }  // check index range

float result = 0.0f; 
for (int i = 0; i < 3; i++) 
result += input[index + i];

output[index] = result;  // write back to global memory
}

int N = 1024 * 1024, THREADS_PER_BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2));  // allocate
cudaMalloc(&devOutput, sizeof(float) * N);       // allocate

// property initialize contents of devInput here ...

conv1D<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(devInput, devOutput, N);

Launch 
`N/THREADS_PER_BLK` Blocks
`THREADS_PER_BLK` threads

each thread computes result for 
one element



Recap: Memory Load Reuse
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float A[n][n];
float B[n][n];
float C[n][n];

C[i][j] = sum(A[i][k] * B[j][k], axis=k)

Access of 𝐴 is independent of 𝑗, 
tile the 𝑗 dimension by 𝑡 enables reuse of 𝐴 for 𝑡 times.



Recap: Shared Memory
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Shared Memory / L1 Data Cache 



CUDA 1D Convolution - Reused Shared Memory
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__global__ void conv1D(float* input, float* output, int N) {
int index = blockIdx.x * blockDim.x + threadIdx.x; 
if (index >= N) { return; }  // check index range

__shared__ float smem[THREADS_PER_BLK+2]; // per-block allocation
smem[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
smem[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK]; 

}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++) 
result += smem[threadIdx.x + i];

output[index] = result / 3.f;
}

int N = 1024 * 1024, THREADS_PER_BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2));  // allocate
cudaMalloc(&devOutput, sizeof(float) * N);       // allocate

// property initialize contents of devInput here ...

conv1D<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(devInput, devOutput, N);

each thread computes result for 
one element

All threads cooperatively load 
block’s support region from 
global into shared memory
(total of 130 loads instead of 3 * 
128 loads)

barrier (all threads in block)



CUDA 1D Convolution - Reused Shared Memory
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__global__ void conv1D(float* input, float* output, int N) {
int index = blockIdx.x * blockDim.x + threadIdx.x; 
if (index >= N) { return; }  // check index range

__shared__ float smem[THREADS_PER_BLK+2]; // per-block allocation
smem[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
smem[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK]; 

}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++) 
result += smem[threadIdx.x + i];

output[index] = result / 3.f;
}

int N = 1024 * 1024, THREADS_PER_BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2));  // allocate
cudaMalloc(&devOutput, sizeof(float) * N);       // allocate

// property initialize contents of devInput here ...

conv1D<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(devInput, devOutput, N);

Discussion: why need sync all threads?

Answer: Thread 0 depends on the
shared memory, which is load by
thread 1, so need to ensure all threads
finish reading
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Matrix Multiplication



Naïve of Implementation Matrix Multiplication
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__global__ void matmul(
float A[N][N], float B[N][N], float C[N][N]

) {

int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;

float result = 0; 
for (int k = 0; k < N; ++k) {

result += A[x][k] * B[k][y];
}
C[x][y] = result;

}

Compute 𝐶 = 𝐴 × 𝐵

Each thread compute one element

Global memory access per thread: 2𝑁
Number of threads: 𝑁2

Total global memory access: 𝟐𝑵𝟑



Optimization 1: Thread-Level Register Tiling
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__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;

float c[V][V] = {0};
float a[V], b[V];
for (int k = 0; k < N; ++k) {
a[:] = A[xbase*V : xbase*V + V, k]; 
b[:] = B[k, ybase*V : ybase*V + V]; 
for (int y = 0; y < V; ++y) {
for (int x = 0; x < V; ++x) {
c[x][y] += a[x] * b[y];

}
}

}
C[xbase*V : xbase*V + V, ybase*V : ybase*V + V] = c[:];

}

Compute 𝐶 = 𝐴 × 𝐵

Each thread compute a 𝑉 × 𝑉 submatrix

A

B

C

Global memory access per thread: 2𝑁𝑉
Number of threads: (𝑁/𝑉)2

Total global memory access: 𝟐𝑵𝟑/𝑽



Optimization 2: Block-Level Shared Memory Tiling
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__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) { 
__shared__ float sA[S][L], sB[S][L]; 
float c[V][V] = {0};
float a[V], b[V];
int yblock = blockIdx.y;
int xblock = blockIdx.x;

for (int ko = 0; ko < N; ko += S) {
__syncthreads(); 
sA[:, :] = A[k : k + S, yblock * L : yblock * L + L]; 
sB[:, :] = B[k : k + S, xblock * L : xblock * L + L]; 
__syncthreads();
for (int ki = 0; ki < S; ++ ki) {
a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
b[:] = sB[ki, threadIdx.x * V : threadIdx.x * V + V];
for (int y = 0; y < V; ++y) 
for (int x = 0; x < V; ++x) 
c[y][x] += a[y] * b[x];

} 
}
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];

}

Global memory access per thread block: 2𝐿𝑁
Number of thread blocks: 

Total global memory access: 𝟐𝑵𝟑/𝑳

Shared memory access per thread: 2𝑉𝑁
Number of threads: 
Total shared memory access: 𝟐𝑵𝟑/𝑽
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Parallel Reduction



Parallel Reduction

• Common and important primitive used by many MLSys operators: normalization,

softmax, etc.
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Challenges of Parallel Reduction on GPU

• Task: for a large array of n elements, compute σ𝑖=1
𝑛 𝐴[𝑖]

• To achieve high GPU utilization

• Need to use multiple thread blocks (since a block is assigned to one SM)

• Each thread block reduces a portion of the array

• How to communicate partial results between thread blocks?
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Multiple Kernels

• Avoid global synchronization by decompose computation into

multiple kernel invocations

• Code for all levels is the same
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Version 1: Interleaved Addressing
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Version 1:  Divergent Warps
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s=1 T F T F T F T F T F T F T F T F

s=2 T F F F T F F F T F F F T F F F

s=4 T F F F F F F F T F F F F F F F

s=8 T F F F F F F F F F F F F F F F

for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0)
sdata[tid] += sdata[tid + s];

__syncthreads();
}



Version 2: Strided Index and Non-divergent Warp
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for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0)
sdata[tid] += sdata[tid + s];

__syncthreads();
}

for(unsigned int s=blockDim.x / 2; s > 0; s /= 2) {
if (threadIdx.x < s) {
sdata[threadIdx.x] += sdata[threadIdx.x + s];

}
__syncthreads();

}



Version 2:  Non-Divergent Warps

23
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s=8 T T T T T T T T F F F F F F F F

s=4 T T T T F F F F F F F F F F F F

s=2 T T F F F F F F F F F F F F F F

s=1 T F F F F F F F F F F F F F F F

for(unsigned int s=blockDim.x / 2; s > 0; s /= 2) {
if (threadIdx.x < s) {
sdata[threadIdx.x] += sdata[threadIdx.x + s];

}
__syncthreads();

}



Coalesced Memory Access

• Multiple GPU threads access consecutive memory addresses

• Maximize GPU memory bandwidth
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Version 2: Sequential Addressing
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Further Optimization

• Leverage Tensor Cores to speed up register level operation

• Leverage TMA to boost memory copy from global to shared memory

• Use swizzle to reduce bank conflict in shared memory

• Enable multi-stage software pipeline to hide data movement latency

• ...
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