System for Artificial Intelligence

CUDA Programming Case Studies

Siyuan Feng
Shanghai Innovation Institute

Recap: H100 Streaming Multiprocessor

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/
ST

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/
ST ST

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/
ST

TENSOR CORE
4™ GENERATION

LD/ LD/

ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 FP64
FP32 FP&4
FPa2 FP&4
FPaz2 FP&d
FP32 FP&4
FP3z2 FP&4
FP32 FP&4
FP32 FP64

TENSOR CORE

FP32 FPE4 4™ GENERATION

FP32 FP84
FP3" FPE4
FP32 FPEd
FP32 b4
FP32 FP64
FPa2 FP84
FP32 FP84

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 FPE4
FP32 FPE4
FP32 FP&4
FP32 FP&4
FPa2 FP&4
FP32 FPG4
FP32 FP&4
FP32 FP&4

INT32
INT32
INT32
INT32
INT32
INT3Z
INT32

TENSOR CORE INT32

FP32 FPE4 4™ GENERATION INT32

FP32 FP&4
FP32 FP&4
FP32 FP&4
FP32 FPB4
FP32 FPG4
FP32 FPa4
FP32 FPB4

WV WV L U DY
ST ST ST ST 8T

INT32
INT32
INT32
INT32Z
INT32
INT32
INT32

SFU o

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FPe4
FP32 FP32 FPe4
FP32 FP32 FP&d
FP3Z2 FP32 P84
FP32 FP32 P84
FP32 FP32 FP8d
FP32 FP32 FP8d

g 8§ F B

Innovation

TENSOR CORE

FP32 FP32 FPe4 4™ GENERATION

FP32 FP32]
FP32 FP32 FP&4
FP32 FPI2 FP&4
FP32 FP32 FPE4
FP32 FP32 FPE4
FP32 FP32 FP&4
FP32 FP32 FP&4

W L LDf L LD LD LD
ST 8T ST ST ST ST ST

L0 Instruction Cache
Warp Scheduler (32 threadiclk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 FP32 FP84
FP32 FP32 FP84
FP32 FP32 FP84
FP32 FP32 FPE4
FP32 FP32 FP84
FP32 2 FP64
FP32 2 FP84
FP32 FP84

TENSOR CORE

FPa2 FP64 4™ GENERATION

FP32 FP84
FP32 FP84
FP32 FP84
FP32 FP32 FP84
FP32 FP32 FP84
FP32 FP32

FP32 FP32

LV LD LD T TR
ST ST ST ST ST

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex

Tex

SFU

Institute

Recap: CUDA Blocks Map to GPU SM

"

The whole CUDA program runs on whole GPU, while a block runs on a single SM

Grid

Block(0, 0) Block(1, 0) Block(2, 0)

(AL MM

(UL

Block(0,1) -1 | Block(1,1) | T~ Block(2, 1)

Block(1, 1)

Thread(0, 0) | Thread(1, 0) | Thread(2, 0)

v v v

Thread(3, 0)

v

Thread(0, 1) | Thread(1, 1) | Thread(2, 1)

v v v

Thread(3, 1)

v

Thread(0, 2) | Thread(1, 2) | Thread(2, 2)

Thread(3, 2)

TENSOR CORE
4" GENERATION

TENSOR CORE
4" GENERATION

-

Shanghai Innovation Institute

TENSOR CORE
4" GENERATION

TENSOR CORE
4" GENERATION

@ » Convolution 1D

@ » Matrix Multiplication

|
Convolution 1D

y N <,

' CUDA Programming Example: 1D Convolution tBo8Z R

Shanghai Innovation Institute

output[i] = input[i] + input[i+l1l] + input[i+2];

Input Input Input Input Input Input ' Input ' Input | Input
[0] [1] [2] [3] [4] [5] [6] [7] [8]

Output Output Output Output Output Output Output
[€] [1] [2] [3] [4] [5] [6]

v 4

CUDA 1D Convolution - Naive

int N = 1024 * 1024, THREADS PER BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2)); // allocate
cudaMalloc (&devOutput, sizeof(float) * N); // allocate

// property initialize contents of devInput here ...

convlP<<<N/THREADS_PER_BLK, THREADS_ PER_BLK>>>{devInput, devOutput, N);

__global _ void convlD(float* input, float* output, int N) {

int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= N) { return; } // check index range

float result = 0.0f;

for (int i = 0; i < 3; i++)
result += input[index + i];

output[index] = result; // write back to global memory

€ i saumzn

’ Shanghai Innovation Institute

Launch
'N/THREADS PER_BLK"™ Blocks
"THREADS PER_BLK™ threads

each thread computes result for
one element

' Recap: Memory Load Reuse £ B8l 8 % [k

Shanghai Innovation Institute

float A[n][n];
float B[n][n];
float C[n][n];

C[i][J] = sum(A[i][k] * B[J][k], axis=k)

Access of A is independent of j,
tile the j dimension by t enables reuse of A for t times.

AN

g el 8 F bk

Shanghai Innovation Institute

Recap: Shared Memory

L0 Instruction Cache L0 Instruction Cache
‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP32 FP64 FP64
FP32 3 FP&4
FP32
FP32
FP32
FP32
FP32 64

TENSOR CORE 2 FP2 TENSOR CORE
FP32 4™ GENERATION 4™ GENERATION

LD LD [T
sT sT st st sgr ofd

LO Instruction Cache L0 Instruction Cache
‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk) Dispatch Unit (32 threadiclk)

Register File (16,384 x 32 Register File (16,384 x 32-bit)

FP32 FP&4 INT32 FP32 FPé4

FP32 FP&4 INT32 FP32 FP&4

FP32 FP&4 INT32 FP32

FP32 FP&4 INT32 FP32

FP32 FP&4 INT32 FP32

FP32 FP&4 INT32 FP32

FP32 FP&4 INT32 FP32

FPaz TENSOR CORE INT32 FPaz2 TENSOR CORE
FP32 4™ GENERATION INT32 FPa2 : 4™ GENERATION
FP32 INT32 FP32 6.

INT32 FP32 B. INT32 FP32

INT32 FP32 INT32 FP32

INT32 FP32 INT32 FP32

INT32 FP32 INT32 FP32

INT32 FP32 B INT32 FP32

INT32 FP32 FP&4 INT22 FP32

F R F Y EFE RS s -

Shared Memory / L1 Data Cache <«

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

v 4

CUDA 1D Convolution - Reused Shared Memory

int N = 1024 * 1024, THREADS PER BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2));
cudaMalloc (&devOutput, sizeof(float) * N);

// allocate
// allocate

// property initialize contents of devInput here ...

convlD<<<N/THREADS_PER_BLK, THREADS_ PER_BLK>>>(devInput, devOutput, N);

__global void convlD(float* input, float* output, int N) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= N) { return; } // check index range

__shared__ float smem[THREADS PER BLK+2]; // per-block allocation
smem[threadIdx.x] = input[index];
if (threadIdx.x < 2) {

}

smem[THREADS PER_BLK+threadIdx.x] = input[index+THREADS PER _BLK];

__syncthreads();

/

float result = 0.0f; // thread-local variable

for (int i=0; i<3; i++)
result += smem[threadIdx.x + i];
output|[index] = result / 3.T;

TRy
" &i'@J %% g B

Shanghai Innovation Institute

All threads cooperatively load
block’s support region from
global into shared memory
(total of 130 loads instead of 3 *
128 loads)

barrier (all threads in block)

each thread computes result for

one element
10 ' 4 \

CUDA 1D Convolution - Reused Shared Memory ’ rBel 8 F Ik

Shanghai Innovation Institute

int N = 1024 * 1024, THREADS PER BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2)); // allocate
cudaMalloc (&devOutput, sizeof(float) * N); // allocate

// property initialize contents of devInput here ...

convlD<<<N/THREADS_PER_BLK, THREADS_ PER_BLK>>>(devInput, devOutput, N);

__global void convlD(float* input, float* output, int N) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= N) { return; } // check index range
Discussion: why need sync all threads?
__shared__ float smem[THREADS PER BLK+2]; // per-block allocation
smem[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
smem[THREADS PER BLK+threadIdx.x] = input[index+THREADS PER BLK]; Answer: Thread O depends on the

) shared memory, which is load by
__syncthreads(); thread 1, so need to ensure all threads
finish reading

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)

result += smem[threadIdx.x + 1i];
output[index] = result / 3.f;

} V o

¢

02

Matrix Multiplication

y N <,

Compute C = A XB

Each thread compute one element

__global _ void matmul(
float A[N][N], float B[N][N], float C[N][N]

)

int x
int y

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

float result = 0;

for (int k = 0; k < N; ++k) {
result += A[x][k] * B[k][y];

}

C[x][y] = result;

Naive of Implementation Matrix Multiplication ’ TR

Shanghai Innovation Institute

B

A C

Global memory access per thread: 2N
Number of threads: N2

Total global memory access: 2N3

V o

\, € samep

Optimization 1: Thread-Level Register Tiling "R R

B
Compute C = A XB

Each thread compute a IV X IV submatrix

__global void mm(float A[N][N], float B[N][N], float C[N][N]) {
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase blockIdx.x * blockDim.x + threadIdx.x;

float c[V][V] = {0}; . | ! |

for (int k =0; k< N;)L | | SR
a[:] = A[xbase*V : xbase*V + V, k];
b[:] = B[k, ybase*V : ybase*V + V];
for (inty =0; y < V; ++y) {

for (int x = 0; x < V; ++x) { A C
c[x][y] += a[x] * b[y];
} Global memory access per thread: 2NV
) } Number of threads: (N /V)?
C[xbase*V : xbase*V + V, ybase*V : ybase*V + V] = c[:]; Total global memory access: 2N3/V
}

V o

v

Optimization 2: Block-Level Shared Memory Tiling " LB 8l 5§ £ b

__global void mm(float A[N][N], float B[N]J[N], float C[N][N]) {

__shared__ float sA[S][L], sB[S][L];
float c[V][V] = {0};

float a[V], b[V];

int yblock = blockIdx.y;

int xblock = blockIdx.x;

for (int ko = @; ko < N; ko +=S) {
__syncthreads();
sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];
sB[:, :] = B[k : k +S, xblock * L : xblock * L + L];
__syncthreads();
for (int ki = 0; ki < S; ++ ki) {
a[:] = sA[ki, threadIdx.y * V : threadldx.y * V + V];
b[:] = sB[ki, threadIdx.x * V : threadIdx.x * V + V];
for (int y = 0; y < V; ++y)
for (int x = 0; X < V; ++Xx)
} c[yl[x] += a[y] * b[x];

}
int ybase = blockIdx.y * blockDim.y + threadIdx.y;

int xbase blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];

Shanghai Innovation Institute

Global memory access per thread block: 2LN
Number of thread blocks:

Total global memory access: 2N3/L

Shared memory access per thread: 2VN
Number of threads:
Total shared memory access: 2N3/V

|
Parallel Reduction

y N <,

' Parallel Reduction Lis ol 8 2R

Shanghai Innovation Institute

e Common and important primitive used by many MLSys operators: normalization,
softmayx, etc.

Sum = 25

E Bt 8 F Kk

Shanghai Innovation Institute

" 4 ’

Challenges of Parallel Reduction on GPU

* Task: for a large array of n elements, compute Y.'*; A[i]

* To achieve high GPU utilization
* Need to use multiple thread blocks (since a block is assigned to one SM)

e Each thread block reduces a portion of the array

* How to communicate partial results between thread blocks?

Sum = 25

y ol
Multiple Kernels S LEoEsR

Shanghai Innovation Institute

 Avoid global synchronization by decompose computation into
multiple kernel invocations

 Code for all levels is the same

8blocks
\\ \\ \ / // ’/
\\\\\ \ /7 7 -
> S < 2~

j Level 1:
1 block

19

7 ,

Version 1: Interleaved Addressing f A i

Values (shared memory) 0|1 |8 |10 (-2|3|(5|-2|-3|2|7|]0(|11]0]| 2

Step 1 Thread
Stride 1 IDs
Values
Step 2 Thread
Stride 2 IDs
Values

Step 3 Thread

Stride 4 IDs
Values
Step 4 Thread
Stride 8 IDs

Values |41 |1 |7 |1 |6 |-2|8 |5 (17|39 |7 [13|11| 2 | 2

20

' Version 1: Divergent Warps L5 el &% kK

Shanghai Innovation Institute

for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0)
sdata[tid] += sdata[tid + s];
__syncthreads();

}

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y,

Version 2: Strided Index and Non-divergent Warp £ i3 8l 8 %

Shanghai Innovation Institute

for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == Q)
sdata[tid] += sdata[tid + s];
__syncthreads();
}

for(unsigned int s=blockDim.x / 2; s > @0; s /= 2) {
if (threadIdx.x < s) {
sdata[threadIdx.x] += sdata[threadIdx.x + s];

}
__syncthreads();

}

' Version 2: Non-Divergent Warps Lti3el 82K

Shanghai Innovation Institute

for(unsigned int s=blockDim.x / 2; s > 0; s /= 2) {
if (threadIdx.x < s) {
sdata[threadIdx.x] += sdata[threadIdx.x + s];

}
__syncthreads();

}

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Coalesced Memory Access f i ol 8 %R

Shanghai Innovation Institute

* Multiple GPU threads access consecutive memory addresses

* Maximize GPU memory bandwidth

third load third load
second load Tt 1, 1; T, second load [T, 1, T3 1§,
)4 %
W \ 4 4 7 L 4 l W W
1T12|3]4]|5]|6]|7]|8|9]10]11]12 112|3|4|5]|6]|7]|8|9|10]11]12
coalesced access (optimal usage) Non-coalesced access (suboptimal usage)

V o

7

Version 2: Sequential Addressing f L5 8l 8 2

Shanghai Innovation Institute

Values (shared memory) |10 1 |8 |1|0|2|3|5|2|3|2|7]|0|1M]|]0]2

Step 1 Thread
Stride 8 IDs
Values

Step 2 Thread

Stride 4 IDs
Values
Step 3 Thread
Stride 2 IDs
Values
Step 4 Thread
Stride 1 IDs

Values |41 |20 |13 (13| 0 |9 |3 |7 |(-2|-3|2 |7 |0 (11|02

25

v o

Further Optimization g LBOE 2R

Shanghai Innovation Institute

* Leverage Tensor Cores to speed up register level operation
* Leverage TIVIA to boost memory copy from global to shared memory
* Use swizzle to reduce bank conflict in shared memory

* Enable multi-stage software pipeline to hide data movement latency

y
Acknowledgement S LEoEsR

Shanghai Innovation Institute

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and
institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.
- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely
our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

27

System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute

	Slide 1: CUDA Programming Case Studies
	Slide 2: Recap: H100 Streaming Multiprocessor
	Slide 3: Recap: CUDA Blocks Map to GPU SM
	Slide 4
	Slide 5
	Slide 6: CUDA Programming Example: 1D Convolution
	Slide 7: CUDA 1D Convolution - Naive
	Slide 8: Recap: Memory Load Reuse
	Slide 9: Recap: Shared Memory
	Slide 10: CUDA 1D Convolution - Reused Shared Memory
	Slide 11: CUDA 1D Convolution - Reused Shared Memory
	Slide 12
	Slide 13: Naïve of Implementation Matrix Multiplication
	Slide 14: Optimization 1: Thread-Level Register Tiling
	Slide 15: Optimization 2: Block-Level Shared Memory Tiling
	Slide 16
	Slide 17: Parallel Reduction
	Slide 18: Challenges of Parallel Reduction on GPU
	Slide 19: Multiple Kernels
	Slide 20: Version 1: Interleaved Addressing
	Slide 21: Version 1: Divergent Warps
	Slide 22: Version 2: Strided Index and Non-divergent Warp
	Slide 23: Version 2: Non-Divergent Warps
	Slide 24: Coalesced Memory Access
	Slide 25: Version 2: Sequential Addressing
	Slide 26: Further Optimization
	Slide 27: Acknowledgement
	Slide 28: Thanks

