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Recap: H100 Streaming Multiprocessor
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Recap: CUDA Blocks Map to GPU SM

"

The whole CUDA program runs on whole GPU, while a block runs on a single SM

Grid

Block(0, 0) Block(1, 0) Block(2, 0)

(AL MM

(UL

Block(0,1) -1 | Block(1,1) | T~ Block(2, 1)

Block(1, 1)

Thread(0, 0) | Thread(1, 0) | Thread(2, 0)

v v v

Thread(3, 0)

v

Thread(0, 1) | Thread(1, 1) | Thread(2, 1)

v v v

Thread(3, 1)

v

Thread(0, 2) | Thread(1, 2) | Thread(2, 2)

Thread(3, 2)

TENSOR CORE
4" GENERATION

TENSOR CORE
4" GENERATION

-

Shanghai Innovation Institute

TENSOR CORE
4" GENERATION

TENSOR CORE
4" GENERATION



@ » Convolution 1D

@ »  Matrix Multiplication
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' CUDA Programming Example: 1D Convolution tBo8Z R
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output[i] = input[i] + input[i+l1l] + input[i+2];

Input Input Input Input Input Input ' Input ' Input | Input
[0] [1] [2] [3] [4] [5] [6] [7] [8]

Output Output Output Output Output Output Output
[€] [1] [2] [3] [4] [5] [6]
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CUDA 1D Convolution - Naive

int N = 1024 * 1024, THREADS PER BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2)); // allocate
cudaMalloc (&devOutput, sizeof(float) * N); // allocate

// property initialize contents of devInput here ...

convlP<<<N/THREADS_PER_BLK, THREADS_ PER_BLK>>>{devInput, devOutput, N);

__global _ void convlD(float* input, float* output, int N) {

int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= N) { return; } // check index range

float result = 0.0f;

for (int i = 0; i < 3; i++)
result += input[index + i];

output[index] = result; // write back to global memory

€ i saumzn
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Launch
'N/THREADS PER_BLK"™ Blocks
"THREADS PER_BLK™ threads

each thread computes result for
one element




' Recap: Memory Load Reuse £ B8l 8 % [k
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float A[n][n];
float B[n][n];
float C[n][n];

C[i][J] = sum(A[i][k] * B[J][k], axis=k)

Access of A is independent of j,
tile the j dimension by t enables reuse of A for t times.

AN
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Recap: Shared Memory
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CUDA 1D Convolution - Reused Shared Memory

int N = 1024 * 1024, THREADS PER BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2));
cudaMalloc (&devOutput, sizeof(float) * N);

// allocate
// allocate

// property initialize contents of devInput here ...

convlD<<<N/THREADS_PER_BLK, THREADS_ PER_BLK>>>(devInput, devOutput, N);

__global  void convlD(float* input, float* output, int N) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= N) { return; } // check index range

__shared__ float smem[THREADS PER BLK+2]; // per-block allocation
smem[threadIdx.x] = input[index];
if (threadIdx.x < 2) {

}

smem[ THREADS PER_BLK+threadIdx.x] = input[index+THREADS PER _BLK];

__syncthreads();

/

float result = 0.0f; // thread-local variable

for (int i=0; i<3; i++)
result += smem[threadIdx.x + i];
output|[index] = result / 3.T;

TRy
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All threads cooperatively load
block’s support region from
global into shared memory
(total of 130 loads instead of 3 *
128 loads)

barrier (all threads in block)

each thread computes result for

one element
10 ' 4 \



CUDA 1D Convolution - Reused Shared Memory ’ rBel 8 F Ik
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int N = 1024 * 1024, THREADS PER BLK = 128
cudaMalloc(&devInput, sizeof(float) * (N + 2)); // allocate
cudaMalloc (&devOutput, sizeof(float) * N); // allocate

// property initialize contents of devInput here ...

convlD<<<N/THREADS_PER_BLK, THREADS_ PER_BLK>>>(devInput, devOutput, N);

__global  void convlD(float* input, float* output, int N) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= N) { return; } // check index range
Discussion: why need sync all threads?
__shared__ float smem[THREADS PER BLK+2]; // per-block allocation
smem[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
smem[ THREADS PER BLK+threadIdx.x] = input[index+THREADS PER BLK]; Answer: Thread O depends on the

) shared memory, which is load by
__syncthreads(); thread 1, so need to ensure all threads
finish reading

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)

result += smem[threadIdx.x + 1i];
output[index] = result / 3.f;

} V o
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Matrix Multiplication
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Compute C = A XB

Each thread compute one element

__global _ void matmul(
float A[N][N], float B[N][N], float C[N][N]

)

int x
int y

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

float result = 0;

for (int k = 0; k < N; ++k) {
result += A[x][k] * B[k][y];

}

C[x][y] = result;

Naive of Implementation Matrix Multiplication ’ TR
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B

A C

Global memory access per thread: 2N
Number of threads: N2

Total global memory access: 2N3

V o
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Optimization 1: Thread-Level Register Tiling "R R

B
Compute C = A XB

Each thread compute a IV X IV submatrix

__global  void mm(float A[N][N], float B[N][N], float C[N][N]) {
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase blockIdx.x * blockDim.x + threadIdx.x;

float c[V][V] = {0}; . | ! |

for (int k =0; k< N; )L | | SR
a[:] = A[xbase*V : xbase*V + V, k];
b[:] = B[k, ybase*V : ybase*V + V];
for (inty =0; y < V; ++y) {

for (int x = 0; x < V; ++x) { A C
c[x][y] += a[x] * b[y];
} Global memory access per thread: 2NV
) } Number of threads: (N /V)?
C[xbase*V : xbase*V + V, ybase*V : ybase*V + V] = c[:]; Total global memory access: 2N3/V
}

V o
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Optimization 2: Block-Level Shared Memory Tiling " LB 8l 5§ £ b

__global  void mm(float A[N][N], float B[N]J[N], float C[N][N]) {

__shared__ float sA[S][L], sB[S][L];
float c[V][V] = {0};

float a[V], b[V];

int yblock = blockIdx.y;

int xblock = blockIdx.x;

for (int ko = @; ko < N; ko +=S) {
__syncthreads();
sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];
sB[:, :] = B[k : k +S, xblock * L : xblock * L + L];
__syncthreads();
for (int ki = 0; ki < S; ++ ki) {
a[:] = sA[ki, threadIdx.y * V : threadldx.y * V + V];
b[:] = sB[ki, threadIdx.x * V : threadIdx.x * V + V];
for (int y = 0; y < V; ++y)
for (int x = 0; X < V; ++Xx)
} c[yl[x] += a[y] * b[x];

}
int ybase = blockIdx.y * blockDim.y + threadIdx.y;

int xbase blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];

Shanghai Innovation Institute

Global memory access per thread block: 2LN
Number of thread blocks:

Total global memory access: 2N3/L

Shared memory access per thread: 2VN
Number of threads:
Total shared memory access: 2N3/V
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' Parallel Reduction Lis ol 8 2R
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e Common and important primitive used by many MLSys operators: normalization,
softmayx, etc.

Sum = 25
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Challenges of Parallel Reduction on GPU

* Task: for a large array of n elements, compute Y.'*; A[i]

* To achieve high GPU utilization
* Need to use multiple thread blocks (since a block is assigned to one SM)

e Each thread block reduces a portion of the array

* How to communicate partial results between thread blocks?

Sum = 25
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Multiple Kernels S LEoEsR
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 Avoid global synchronization by decompose computation into
multiple kernel invocations

 Code for all levels is the same

8blocks
\\ \\ \ / // ’/
\\\\\ \ /7 7 -
> S < 2~

j Level 1:
1 block
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Version 1: Interleaved Addressing f A i

Values (shared memory) 0|1 |8 |10 (-2|3|(5|-2|-3|2|7|]0(|11]0 ]| 2

Step 1 Thread
Stride 1 IDs
Values
Step 2 Thread
Stride 2 IDs
Values

Step 3 Thread

Stride 4 IDs
Values
Step 4 Thread
Stride 8 IDs

Values |41 |1 |7 |1 |6 |-2|8 |5 (17|39 |7 [13|11| 2 | 2
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' Version 1: Divergent Warps L5 el &% kK
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for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0)
sdata[tid] += sdata[tid + s];
__syncthreads();

}

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Version 2: Strided Index and Non-divergent Warp £ i3 8l 8 %
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for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == Q)
sdata[tid] += sdata[tid + s];
__syncthreads();
}

for(unsigned int s=blockDim.x / 2; s > @0; s /= 2) {
if (threadIdx.x < s) {
sdata[threadIdx.x] += sdata[threadIdx.x + s];

}
__syncthreads();

}




' Version 2: Non-Divergent Warps Lti3el 82K
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for(unsigned int s=blockDim.x / 2; s > 0; s /= 2) {
if (threadIdx.x < s) {
sdata[threadIdx.x] += sdata[threadIdx.x + s];

}
__syncthreads();

}

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15




Coalesced Memory Access f i ol 8 %R
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* Multiple GPU threads access consecutive memory addresses

* Maximize GPU memory bandwidth

third load third load
second load Tt 1, 1; T, second load [T, 1, T3 1§,
)4 %
W \ 4 4 7 L 4 l W W
1T12|3]4]|5]|6]|7]|8|9]10]11]12 112|3|4|5]|6]|7]|8|9|10]11]12
coalesced access (optimal usage) Non-coalesced access (suboptimal usage)

V o
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Version 2: Sequential Addressing f L5 8l 8 2
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Values (shared memory) |10 1 |8 |1|0|2|3|5|2|3|2|7]|0|1M]|]0]2

Step 1 Thread
Stride 8 IDs
Values

Step 2 Thread

Stride 4 IDs
Values
Step 3 Thread
Stride 2 IDs
Values
Step 4 Thread
Stride 1 IDs

Values |41 |20 |13 (13| 0 |9 |3 |7 |(-2|-3|2 |7 |0 (11|02

25
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Further Optimization g LBOE 2R
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* Leverage Tensor Cores to speed up register level operation
* Leverage TIVIA to boost memory copy from global to shared memory
* Use swizzle to reduce bank conflict in shared memory

* Enable multi-stage software pipeline to hide data movement latency
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