
System for Artificial Intelligence

NPU Architecture & Ascend Programming

Siyuan Feng

Shanghai Innovation Institute



Recap: Overview of Machine Learning Systems

2

Graph Optimization

Automatic Differentiation

Parallelism / Distributed

Hardware Acceleration

ML Models

NVIDIA GPU HUAWEI NPU Mobile devices

This Lecture



O U T L I N E

01

02

3

HUWEI NPU Architectures

Ascend C Programming



4

01
HUWEI NPU Architectures



NPU AI Core Architecture

5

Scalar Unit: 
c = a + b

Vector Unit: 
C[0:1024] = A[0:1024] + B[0:1024]

Cube Unit: 
C[0:16, 0:16] += 

A[0:16, 0:16] * B[0:16, 0:16]

Local Memory

Global Memory

Vec ALU

In
st DMA

In
stCube ALU

In
st

Scalar ALU

Instruction
Queue

inst

data

sync



Disaggregated AI Core Architecture (910 B / C)

6

• Multi-level Memory Scope

• Not "full-mesh" access across ALU 
and memory



Discussion: comparison between NPU and GPU

7
HUAWEI NPU Architecture NVIDIA GPU Architecture



8

02
Ascend C Programming



Recap: Five-Stage Pipeline in CPU

9

Instruction 
Fetch

Instruction 
Decode

Execute
Memory 
Access

Write Back 
to Reg

1 2 3 4 5 6 7 8 9

Instruct 1 IF ID EX MEM WB

Instruct 2 IF ID EX MEM WB

Instruct 3 IF ID EX MEM WB

Instruct 4 IF ID EX MEM WB

Instruct 5 IF ID EX MEM WB

Discussion: Why? Utilize different hardware components at the same time



Ascend C Programming for AIV

10

GM GM

DMA DMAALU VEC_OUTVEC_IN

CopyIn CopyOutComputePush Pop Push Pop 

Queue in 
local memory

Queue in 
local memory

Three tasks:

1. CopyIn: load data from global memory to local memory and push to queue VEC_IN

2. Compute: load from queue VEC_IN, do computation, and then store to VEC_OUT

3. CopyOut: load data from queue VEC_IN, and store data to VEC_OUT



Pseudocode for AIV Programming

11

TQue<VecIn, 1> queIn;   
TQue<VecOut, 1> queOut; 

for-loop {
// CopyIn Stage
auto tensor = queIn.AllocTensor<half>();       // Allocate tensor at local for input
DataCopy(tensor, gm, len);                     // Copy data from gm to local
queIn.EnQue(tensor);                           // push tensor to queIn after load

// Compute Stage
auto tensor = queIn.DeQue<half>();             // Get tensor from queIn when ready
auto tensorOut = queOut.AllocTensor<half>();   // Allocate tensor at local for output
OP(tensorOut, tensor, 1024);                   // Main computation
queIn.FreeTensor(tensor);                      // Free input tensor at local
queOut.EnQue(tensorOut);                       // Push output tensor to queOut

// CopyOut Stage
auto tensor = queOut.DeQue<half>();            // Get tensor from queIn when ready
DataCopy(gmOut, tensor, 1024);                 // Copy data from local to gm
queOut.FreeTensor(tensor);                     // Free output tensor at local

}



Pipeline of AIV

12

1 2 3 4 5 6 7

Tile 1 CopyIn Compute CopyOut

Tile 2 CopyIn Compute CopyOut

Tile 3 CopyIn Compute CopyOut

Tile 4 CopyIn Compute CopyOut

Tile 5 CopyIn Compute CopyOut



Ascend C Programming for AIC

13

CopyIn Compute

GM GM

CopyOut

A2A1

ALU

B2B1

CO1 CO2

Tiling Aggregate

A1: L2 cache for matrix A
A2: L1 cache for matrix A
B1: L2 cache for matrix B
B2: L1 cache for matrix B

CO1: Output buffer for tiled C
CO2: Output buffer for C



Pseudocode for AIC Programming

14

// Init
typedef MatmulType<TPosition::GM, CubeFormat::ND, half> aType; 
typedef MatmulType<TPosition::GM, CubeFormat::ND, half> bType; 
typedef MatmulType<TPosition::GM, CubeFormat::ND, float> cType; 
typedef MatmulType<TPosition::GM, CubeFormat::ND, float> biasType; 
Matmul<aType, bType, cType, biasType> mm; 

REGIST_MATMUL_OBJ(&pipe, GetSysWorkSpacePtr(), mm, &tiling); 

// CopyIn stage
mm.SetTensorA(gm_a);   
mm.SetTensorB(gm_b);   
mm.SetBias(gm_bias);  

// Compute stage
while (mm.Iterate()) { 

// CopyOut Stage
mm.GetTensorC(gm_c); 

}
mm.End();



Ascend C Programming for Fused Operator

15

CopyIn Compute

GM GM

ALU VEC_OUTVEC_IN

CopyIn Compute

CopyOut

CopyOut

A2A1

ALU

B2B1

CO1 CO2

Tiling Aggregate

A1: L2 cache for matrix A
A2: L1 cache for matrix A
B1: L2 cache for matrix B
B2: L1 cache for matrix B

CO1: Output buffer for tiled C
CO2: Output buffer for C
VEC_IN: input buffer for AIV
VEC_OUT: output buffer for AIC



Pseudocode for Fused Operator

16

template<typename aType, typename bType, typename cType, typename biasType>
__aicore__ inline void MatmulLeakyKernel<aType, bType, cType, biasType>::Process() {

// Step 1. Init
REGIST_MATMUL_OBJ(&pipe, GetSysWorkSpacePtr(), matmulObj);
matmulObj.Init(&tiling);
matmulObj.SetTensorA(aGlobal);
matmulObj.SetTensorB(bGlobal);
matmulObj.SetBias(biasGlobal);

// Step 2. iterate the tiling
while (matmulObj.template Iterate<true>()) { 

// Step 3. Move the output to AIV
reluOutLocal = reluOutQueue_.AllocTensor<cType>();
matmulObj.template GetTensorC<true>(reluOutLocal, false, true);
// Step 4. Compute on AIV
AscendC::LeakyRelu(reluOutLocal, reluOutLocal, (cType)alpha, tiling.baseM * tiling.baseN);
reluOutQueue_.EnQue(reluOutLocal);
// Step 5. Write result back to GM
reluOutQueue_.DeQue<cType>();
...
AscendC::DataCopy(cGlobal[startOffset], reluOutLocal, copyParam);
reluOutQueue_.FreeTensor(reluOutLocal);

}
matmulObj.End();

}



Programming Paradigm

• Utilize hardware by applying instruction pipeline

• Each stage of tasks:

• Allocate local memory or get local memory from upstream queue

• Compute or copy data

• Push processed data to downstream queue

• Free useless local memory

17



Appendix A: The Processing Flow of Enque / Deque

1. Scalar unit read the instruction

2. The instructions are dispatched to the corresponding unit's queues

3. The various execution units execute these instruction in parallel.

4. Enque/Deque resolves the Write-After-Read (WAR) hazard for memory:

1. An Enque call issues a synchronization instruction (set), sending a signal to activate

the wait.

2. A Deque call issues a synchronization instruction (wait), waiting for the data write

to complete.

3. The wait must wait for the set signal before it can execute; otherwise, it is blocked.

18



Appendix A: The Processing Flow of Enque / Deque

19

16. z.FreeTensor(zl)

15. DataCopy(zl)

14. zl = z.Deque()

13. z.Enque(zl)

12. y.FreeTensror(yl)

11. x.FreeTensror(xl)

10. Add (zl, xl, yl)

9.  zl = z.AllocTensor()

8.  yl = y.Deque()

7.  xl = x.Deque()

6.  y.Enque(yl)

5.  x.Enque(xl)

4.  DataCopy(yl)

3.  DataCopy(xl)

2.  yl = y.AllocTensor()

1.  xl = x.AllocTensor()
GM DMA DMAALU VEC_OUTVEC_IN GM

Scalar ALU

6. SetFlag(2)
5. SetFlag(1)
4. DataCopy(yl)
3. DataCopy(xl)

13. SetFlag(3)
10. Add(zl, xl, yl)

8. WaitFlag(2)
7. WaitFlag(1)

15. DataCopy(zl)
14. WaitFlag(3)

DMA
Instructions

ALU
Instructions

DMA
Instructions

Operator Instruction Sequence



Appendix A: The Processing Flow of Enque / Deque

20

DMA

DMA

ALU

DataCopy(xl)

Add(zl, xl, yl)

DataCopy(zl)

Deque:WaitFlag(1) Enque:SetFlag(3)

Deque:WaitFlag(3)

Enque:SetFlag(1)



Appendix B: The Processing Flow of AllocTensor / FreeTensor

1. Scalar unit read the instruction

2. The instructions are dispatched to the corresponding unit's queues

3. The various execution units execute these instruction in parallel.

4. AllocTensor/FreeTensor resolves the Read-After-Write (RAW) hazard:

1. An AllocTensor call issues a synchronization instruction (wait), waiting for the

memory to finish being read.

2. A FreeTensor call issues a synchronization instruction (set), signaling that the

memory is released and can be repeatedly written to.

3. The wait must wait for the set signal before it can execute; otherwise, it is blocked.

21



Appendix B: The Processing Flow of AllocTensor / FreeTensor

22

16. z.FreeTensor(zl)

15. DataCopy(zl)

14. zl = z.Deque()

13. z.Enque(zl)

12. y.FreeTensror(yl)

11. x.FreeTensror(xl)

10. Add (zl, xl, yl)

9.  zl = z.AllocTensor()

8.  yl = y.Deque()

7.  xl = x.Deque()

6.  y.Enque(yl)

5.  x.Enque(xl)

4.  DataCopy(yl)

3.  DataCopy(xl)

2.  yl = y.AllocTensor()

1.  xl = x.AllocTensor()

Operator Instruction Sequence

GM DMA DMAALU VEC_OUTVEC_IN GM

Scalar ALU

DMA
Instructions

ALU
Instructions

DMA
Instructions

4. DataCopy(yl)
3. DataCopy(xl)
2. WaitFlag(5)
1. WaitFlag(4)

12. SetFlag(5)
11. SetFlag(4) 
10. Add(zl, xl, yl)
9. WaitFlag(6)

16. SetFlag(6) 
15. DataCopy(zl)



Appendix B: The Processing Flow of AllocTensor / FreeTensor

23

DMA

DMA

ALU

DataCopy(xl)

Add(zl, xl, yl)

DataCopy(zl)

FreeTensor:SetFlag(4)

AllocTensor:WaitFlag(6)

FreeTensor:SetFlag(6)

AllocTensor:WaitFlag(4)
DataCopy(xl)

Add(zl, xl, yl)



Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

24



System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute


	Slide 1: NPU Architecture & Ascend Programming
	Slide 2: Recap: Overview of Machine Learning Systems
	Slide 3
	Slide 4
	Slide 5: NPU AI Core Architecture
	Slide 6: Disaggregated AI Core Architecture (910 B / C)
	Slide 7: Discussion: comparison between NPU and GPU
	Slide 8
	Slide 9: Recap: Five-Stage Pipeline in CPU
	Slide 10: Ascend C Programming for AIV
	Slide 11: Pseudocode for AIV Programming
	Slide 12: Pipeline of AIV
	Slide 13: Ascend C Programming for AIC
	Slide 14: Pseudocode for AIC Programming
	Slide 15: Ascend C Programming for Fused Operator
	Slide 16: Pseudocode for Fused Operator
	Slide 17: Programming Paradigm
	Slide 18: Appendix A: The Processing Flow of Enque / Deque
	Slide 19: Appendix A: The Processing Flow of Enque / Deque
	Slide 20: Appendix A: The Processing Flow of Enque / Deque
	Slide 21: Appendix B: The Processing Flow of AllocTensor / FreeTensor
	Slide 22: Appendix B: The Processing Flow of AllocTensor / FreeTensor
	Slide 23: Appendix B: The Processing Flow of AllocTensor / FreeTensor
	Slide 24: Acknowledgement
	Slide 25: Thanks

