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NPU Al Core Architecture
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Scalar Unit:
c=a+b

Vector Unit:
C[0:1024] = A[0:1024] + B[©:1024]

Cube Unit:
C[0:16, 0:16] +=
A[©0:16, ©0:16] * B[0:16, 0:16]




' Disaggregated Al Core Architecture (910 B / C)
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e Multi-level Memory Scope

* Not "full-mesh" access across ALU
and memory
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Discussion: comparison between NPU and GPU
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LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)
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Ascend C Programming
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‘ Write Back
to Reg

Recap: Five-Stage Pipeline in CPU

Instruction Instruction Memory
‘ ‘ Execute ‘
Fetch Decode A Access

Instruct 1
Instruct 2
Instruct 3
Instruct 4

Instruct 5

Discussion: Why? Utilize different hardware components at the same time
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Three tasks:
1. Copyln: load data from global memory to local memory and push to queue VEC_IN
2. Compute: load from queue VEC_IN, do computation, and then store to VEC_OUT

3. CopyOut: load data from queue VEC _IN, and store data to VEC_OUT




Pseudocode for AlV Programming

TQue<VecIn, 1> queln;
TQue<VecOut, 1> queOut;

for-loop {
// CopyIn Stage
auto tensor = queIn.AllocTensor<half>();
DataCopy(tensor, gm, len);
queln.EnQue(tensor);

// Compute Stage

auto tensor = queIn.DeQue<half>();

auto tensorOut = queOut.AllocTensor<half>();
OP(tensorOut, tensor, 1024);
queln.FreeTensor(tensor);
queOut.EnQue(tensorOut);

// CopyOut Stage

auto tensor = queOut.DeQue<half>();
DataCopy(gmOut, tensor, 1024);
queOut.FreeTensor(tensor);

//
//
//

//
//
//
//
//

//
//
//
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Allocate tensor at local for input
Copy data from gm to local
push tensor to queln after load

Get tensor from queln when ready
Allocate tensor at local for output
Main computation

Free input tensor at local

Push output tensor to queOut

Get tensor from queIn when ready
Copy data from local to gm
Free output tensor at local
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1 2 3 4
Tile 1 Copyln --
Tile 2 Copyln --
Tile 3 Copyln --
Tile 4 Copyln --
Tile 5 Copyln --




Ascend C Programming for AIC

Copyln Tiling
|
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Al: L2 cache for matrix A
A2: L1 cache for matrix A
B1: L2 cache for matrix B
B2: L1 cache for matrix B

CO1: Output buffer for tiled C

CO2: Output buffer for C
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Pseudocode for AIC Programming

// Init

typedef MatmulType<TPosition:
typedef MatmulType<TPosition:
typedef MatmulType<TPosition:
typedef MatmulType<TPosition:

:GM,
:GM,
:GM,
:GM,

CubeFormat:
CubeFormat:
CubeFormat:
CubeFormat:

Matmul<aType, bType, cType, biasType> mm;

:ND,
:ND,
:ND,
:ND,

half> aType;
half> bType;
float> cType;
float> biasType;

REGIST _MATMUL OBJ(&pipe, GetSysWorkSpacePtr(), mm, &tiling);

// CopyIn stage

mm.SetTensorA(gm_a);
mm.SetTensorB(gm _b);
mm.SetBias(gm bias);

// Compute stage

while (mm.Iterate()) {
// CopyOut Stage
mm.GetTensorC(gm c);

}
mm.End();

«
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Ascend C Programming for Fused Operator o

Copyln Tiling Compute Aggregate CopyOut
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Copyln Compute CopyOut
Al: L2 cache for matrix A CO1: Output buffer for tiled C
A2: L1 cache for matrix A CO2: Output buffer for C
B1: L2 cache for matrix B VEC_IN: input buffer for AIV

B2: L1 cache for matrix B VEC_OUT: output buffer for AIC
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template<typename aType, typename bType, typename cType, typename biasType>
__aicore__ inline void MatmullLeakyKernel<aType, bType, cType, biasType>: :Process() {
// Step 1. Init
REGIST _MATMUL_OBJ(&pipe, GetSysWorkSpacePtr(), matmulObj);
matmulObj.Init(&tiling);
matmulObj.SetTensorA(aGlobal);
matmulObj.SetTensorB(bGlobal);
matmulObj.SetBias(biasGlobal);

// Step 2. iterate the tiling
while (matmulObj.template Iterate<true>()) {
// Step 3. Move the output to AIV
reluOutLocal = reluOutQueue_.AllocTensor<cType>();
matmulObj.template GetTensorC<true>(reluOutLocal, false, true);
// Step 4. Compute on AIV
AscendC: :LeakyRelu(reluOutLocal, reluOutLocal, (cType)alpha, tiling.baseM * tiling.baseN);
reluOutQueue .EnQue(reluOutLocal);
// Step 5. Write result back to GM
reluOutQueue_ .DeQue<cType>();

AscendC: :DataCopy(cGlobal[startOffset], reluOutLocal, copyParam);
reluOutQueue .FreeTensor(reluOutLocal);

}
matmulObj.End();
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Programming Paradigm

* Utilize hardware by applying instruction pipeline

e Each stage of tasks:

Allocate local memory or get local memory from upstream queue
* Compute or copy data
* Push processed data to downstream queue

* Free useless local memory
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Appendix A: The Processing Flow of Enque / Deque ’ £ & e8] Z
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Scalar unit read the instruction
The instructions are dispatched to the corresponding unit's queues

The various execution units execute these instruction in parallel.

N N .

Enque/Deque resolves the Write-After-Read (WAR) hazard for memory:
1. An Enque call issues a synchronization instruction (set), sending a signal to activate
the wait.

2. A Deque call issues a synchronization instruction (wait), waiting for the data write
to complete.

3. The wait must wait for the set signal before it can execute; otherwise, it is blocked.
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Appendix A: The Processing Flow of Enque / Deque ¢

Operator Instruction Sequence

16. z.FreeTensor(zl)
15. DataCopy(zl)

14. z1 = z.Deque()
13. z.Enque(zl)

12. y.FreeTensror(yl)

11. x.FreeTensror(xl)
10. Add (z1, x1, yl) l l
DMA ALU DMA o
9. zl = z.AllocTensor() Instructions Instructions Instructions |
8. yl = y.Deque()
7. x1 = x.Deque() 6. SetFlag(2) ---- 13. Se
5. SetFlag(1) ---- 10. Ac
6. .Enque(yl !
L) 4. DataCopy(yl) |
So Meineusdl) 3. DataCopy(xl) i~~~ > 8.Wa 15. DataCopy(zI)
4. DataCopy(yl) (| | mmmmmmme- > 7. WaitFlag(1)  “------- -+ 14. WaitFlag(3)
3. DataCopy(x1l) ~—
2.yl = y.AllocTensor() DMA —> VEC IN —* ALU |— VEC_OUT —* DMA
1. x1 = x.AllocTensor()




' Appendix A: The Processing Flow of Enque / Deque

DMA DataCopy (x1)

Deque:WaitFlag(1
ALU q g(1)
DMA

Enque:SetFlag(1)

Add(zl, x1, yl)

Deque:WaitFlag(3)

Enque:SetFlag(3)

DataCopy(zl)
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Appendix B: The Processing Flow of AllocTensor / FreeTensor ’ gt 8 F Kk

Shanghai Innovation Institute

Scalar unit read the instruction
The instructions are dispatched to the corresponding unit's queues

The various execution units execute these instruction in parallel.

N N .

AllocTensor/FreeTensor resolves the Read-After-Write (RAW) hazard:

1. An AllocTensor call issues a synchronization instruction (wait), waiting for the
memory to finish being read.

2. A FreeTensor call issues a synchronization instruction (set), signaling that the
memory is released and can be repeatedly written to.

3. The wait must wait for the set signal before it can execute; otherwise, it is blocked.
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Appendix B: The Processing Flow of AllocTensor / FreeTensor > gt 8 F Kk
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Operator Instruction Sequence

16. z.FreeTensor(zl)

15. DataCopy(zl)
14. z1 = z.Deque()
13. z.Enque(zl)
12. y.FreeTensror(yl)
11. x.FreeTensror(xl)
10. Add (z1, x1, yl) l
9 1 = 11 PMA o et
. z1 = z.AllocTensor() Instructions Instructions Instructions
8. yl = y.Deque()
7. X1 = x.Deque() 3 Dat oy
6. Yy.Enque(yl) 2 \Wai 10. Ac
5. Xx.Enque(x1l) 1. Wai 9. Wa 16. SetFlag(6)
——————— . SetFla
4. DataCopy(yl) 15. DataCopy(zl)
3. DataCopy(x1l)
2. yl = y.AllocTensor() DMA —> VEC IN —* ALU [— VEC_OUT —* DMA
1. x1 = x.AllocTensor()
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AllocTensor:WaitFlag(4)
DMA DataCopy(x1) DataCopy(x1)

AllocTensor:WaitFlag(6)

ALU Add(zl, x1, yl) Add(zl, x1, yl)

FreeTensor:SetFlag(4)

FreeTensor:SetFlag(6)

DMA DataCopy(zl)
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