System for Artificial Intelligence

NPU Architecture & Ascend Programming

Siyuan Feng
Shanghai Innovation Institute

' Recap: Overview of Machine Learning Systems Lo e
g ML Models

NVIDIA GPU i HUAWEI NPU /' Mobile devices
))
This Lecture

@ » HUWEI NPU Architectures

@ » Ascend C Programming

|
HUWEI NPU Architectures

y N .

NPU Al Core Architecture

Instruction —» inst
Queue — data
v —» sync
Scalar ALU
+ 1
v v v v v
2 | VecAw 2 | CubeALU 2| DMA
y

A A

A\ 4 \ 4

Local Memory

Global Memory

B8 %R

Shanghai Innovation Institute

Scalar Unit:
c=a+b

Vector Unit:
C[0:1024] = A[0:1024] + B[©:1024]

Cube Unit:
C[0:16, 0:16] +=
A[©0:16, ©0:16] * B[0:16, 0:16]

' Disaggregated Al Core Architecture (910 B / C)

MTEZ2

MTEZ2

MTE2

MTEZ

GM

L1 Buffer

MTE1 Buffer LOA

MTE1
Buffer LOB

MTE1 BT Buffer

MTE1 FP Buffer

l

AlC

Cube

FixPipe

Buffer LOC

MTEZ2

MTE3

AlV

Unified Buffer(UB)

g el 8 F bk

Shanghai Innovation Institute

e Multi-level Memory Scope

* Not "full-mesh" access across ALU
and memory

N

Discussion: comparison between NPU and GPU

GM

AlC

MTEZ2
MTE1 Buffer LOA
MTEZ2

MTEL

Buffer LOB

BT Buffer
MTE3 e

MTE1 FP Buffer

Buffer LOC

FixPipe

|

1:N
AV
IIIIIIIIHHHIHIIIIIIIII IIIIIIIIH%HHHIIIIIIIII

MTE2

| Unified Buffer(UB)
MJ[Ea

HUAWEI NPU Architecture

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

€ rsamen
”' fEi fi] %53 g B

Shanghai Innovation Institute

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST

TENSOR CORE
4™ GENERATION

NVIDIA GPU Architecture

¢

02

Ascend C Programming

y N .

g el 8 F bk

Shanghai Innovation Institute

‘ Write Back
to Reg

Recap: Five-Stage Pipeline in CPU

Instruction Instruction Memory
‘ ‘ Execute ‘
Fetch Decode A Access

Instruct 1
Instruct 2
Instruct 3
Instruct 4

Instruct 5

Discussion: Why? Utilize different hardware components at the same time

Ascend C Programming for AIV f L5 8l &8 % K

Shanghai Innovation Institute

Queuein Queuein
local memory local memory

Co;:?yln Push Pop Com:pute Push Pop

GM —— — ——

CopyOut
GM

DMA —— VECIN —m AW — VEC_OUT — DMA

v

v

Three tasks:
1. Copyln: load data from global memory to local memory and push to queue VEC_IN
2. Compute: load from queue VEC_IN, do computation, and then store to VEC_OUT

3. CopyOut: load data from queue VEC _IN, and store data to VEC_OUT

Pseudocode for AlV Programming

TQue<VecIn, 1> queln;
TQue<VecOut, 1> queOut;

for-loop {
// CopyIn Stage
auto tensor = queIn.AllocTensor<half>();
DataCopy(tensor, gm, len);
queln.EnQue(tensor);

// Compute Stage

auto tensor = queIn.DeQue<half>();

auto tensorOut = queOut.AllocTensor<half>();
OP(tensorOut, tensor, 1024);
queln.FreeTensor(tensor);
queOut.EnQue(tensorOut);

// CopyOut Stage

auto tensor = queOut.DeQue<half>();
DataCopy(gmOut, tensor, 1024);
queOut.FreeTensor(tensor);

//
//
//

//
//
//
//
//

//
//
//

g el 8 F bk

Shanghai Innovation Institute

Allocate tensor at local for input
Copy data from gm to local
push tensor to queln after load

Get tensor from queln when ready
Allocate tensor at local for output
Main computation

Free input tensor at local

Push output tensor to queOut

Get tensor from queIn when ready
Copy data from local to gm
Free output tensor at local

' Pipeline of AIV S -ER-EY

Shanghai Innovation Institute

1 2 3 4
Tile 1 Copyln --
Tile 2 Copyln --
Tile 3 Copyln --
Tile 4 Copyln --
Tile 5 Copyln --

Ascend C Programming for AIC

Copyln Tiling
|

Compute
|

Aggregate
|

CopyOut
|

g el 8 F bk

Shanghai Innovation Institute

\ 4

\ 4

Al

A2

GM

\ 4

COo1

v

CO2

v

Bl

B2

> ALU

I 4

\ 4

GM

Al: L2 cache for matrix A
A2: L1 cache for matrix A
B1: L2 cache for matrix B
B2: L1 cache for matrix B

CO1: Output buffer for tiled C

CO2: Output buffer for C

v 4

Pseudocode for AIC Programming

// Init

typedef MatmulType<TPosition:
typedef MatmulType<TPosition:
typedef MatmulType<TPosition:
typedef MatmulType<TPosition:

:GM,
:GM,
:GM,
:GM,

CubeFormat:
CubeFormat:
CubeFormat:
CubeFormat:

Matmul<aType, bType, cType, biasType> mm;

:ND,
:ND,
:ND,
:ND,

half> aType;
half> bType;
float> cType;
float> biasType;

REGIST _MATMUL OBJ(&pipe, GetSysWorkSpacePtr(), mm, &tiling);

// CopyIn stage

mm.SetTensorA(gm_a);
mm.SetTensorB(gm _b);
mm.SetBias(gm bias);

// Compute stage

while (mm.Iterate()) {
// CopyOut Stage
mm.GetTensorC(gm c);

}
mm.End();

«
4

B e85k

Shanghai Innovation Institute

14

> € isame

Ascend C Programming for Fused Operator o

Copyln Tiling Compute Aggregate CopyOut

\ 4

AlWW — CO1 = CO2

GM > Bl > B2 GM
» VEC_IN » ALU » VEC_OUT >
— L ! i I
|

Copyln Compute CopyOut
Al: L2 cache for matrix A CO1: Output buffer for tiled C
A2: L1 cache for matrix A CO2: Output buffer for C
B1: L2 cache for matrix B VEC_IN: input buffer for AIV

B2: L1 cache for matrix B VEC_OUT: output buffer for AIC

Pseudocode for Fused Operator s LiEo e

Shanghai Innovation Institute

template<typename aType, typename bType, typename cType, typename biasType>
__aicore__ inline void MatmullLeakyKernel<aType, bType, cType, biasType>: :Process() {
// Step 1. Init
REGIST _MATMUL_OBJ(&pipe, GetSysWorkSpacePtr(), matmulObj);
matmulObj.Init(&tiling);
matmulObj.SetTensorA(aGlobal);
matmulObj.SetTensorB(bGlobal);
matmulObj.SetBias(biasGlobal);

// Step 2. iterate the tiling
while (matmulObj.template Iterate<true>()) {
// Step 3. Move the output to AIV
reluOutLocal = reluOutQueue_.AllocTensor<cType>();
matmulObj.template GetTensorC<true>(reluOutLocal, false, true);
// Step 4. Compute on AIV
AscendC: :LeakyRelu(reluOutLocal, reluOutLocal, (cType)alpha, tiling.baseM * tiling.baseN);
reluOutQueue .EnQue(reluOutLocal);
// Step 5. Write result back to GM
reluOutQueue_ .DeQue<cType>();

AscendC: :DataCopy(cGlobal[startOffset], reluOutLocal, copyParam);
reluOutQueue .FreeTensor(reluOutLocal);

}
matmulObj.End();

} 16

g el 8 F bk

Shanghai Innovation Institute

v, y

Programming Paradigm

* Utilize hardware by applying instruction pipeline

e Each stage of tasks:

Allocate local memory or get local memory from upstream queue
* Compute or copy data
* Push processed data to downstream queue

* Free useless local memory

v 4

Appendix A: The Processing Flow of Enque / Deque ’ £ & e8] Z

Shanghai Innovation Institute

Scalar unit read the instruction
The instructions are dispatched to the corresponding unit's queues

The various execution units execute these instruction in parallel.

N N .

Enque/Deque resolves the Write-After-Read (WAR) hazard for memory:
1. An Enque call issues a synchronization instruction (set), sending a signal to activate
the wait.

2. A Deque call issues a synchronization instruction (wait), waiting for the data write
to complete.

3. The wait must wait for the set signal before it can execute; otherwise, it is blocked.

18

B e85k

Shanghai Innovation Institute

N7 «
Appendix A: The Processing Flow of Enque / Deque ¢

Operator Instruction Sequence

16. z.FreeTensor(zl)
15. DataCopy(zl)

14. z1 = z.Deque()
13. z.Enque(zl)

12. y.FreeTensror(yl)

11. x.FreeTensror(xl)
10. Add (z1, x1, yl) l l
DMA ALU DMA o
9. zl = z.AllocTensor() Instructions Instructions Instructions |
8. yl = y.Deque()
7. x1 = x.Deque() 6. SetFlag(2) ---- 13. Se
5. SetFlag(1) ---- 10. Ac
6. .Enque(yl !
L) 4. DataCopy(yl) |
So Meineusdl) 3. DataCopy(xl) i~~~ > 8.Wa 15. DataCopy(zI)
4. DataCopy(yl) (| | mmmmmmme- > 7. WaitFlag(1) “------- -+ 14. WaitFlag(3)
3. DataCopy(x1l) ~—
2.yl = y.AllocTensor() DMA —> VEC IN —* ALU |— VEC_OUT —* DMA
1. x1 = x.AllocTensor()

' Appendix A: The Processing Flow of Enque / Deque

DMA DataCopy (x1)

Deque:WaitFlag(1
ALU q g(1)
DMA

Enque:SetFlag(1)

Add(zl, x1, yl)

Deque:WaitFlag(3)

Enque:SetFlag(3)

DataCopy(zl)

R

Shanghai Innovation Institute

N ,f

Appendix B: The Processing Flow of AllocTensor / FreeTensor ’ gt 8 F Kk

Shanghai Innovation Institute

Scalar unit read the instruction
The instructions are dispatched to the corresponding unit's queues

The various execution units execute these instruction in parallel.

N N .

AllocTensor/FreeTensor resolves the Read-After-Write (RAW) hazard:

1. An AllocTensor call issues a synchronization instruction (wait), waiting for the
memory to finish being read.

2. A FreeTensor call issues a synchronization instruction (set), signaling that the
memory is released and can be repeatedly written to.

3. The wait must wait for the set signal before it can execute; otherwise, it is blocked.

21

S 4 »

Appendix B: The Processing Flow of AllocTensor / FreeTensor > gt 8 F Kk

Shanghai Innovation Institute

Operator Instruction Sequence

16. z.FreeTensor(zl)

15. DataCopy(zl)
14. z1 = z.Deque()
13. z.Enque(zl)
12. y.FreeTensror(yl)
11. x.FreeTensror(xl)
10. Add (z1, x1, yl) l
9 1 = 11 PMA o et
. z1 = z.AllocTensor() Instructions Instructions Instructions
8. yl = y.Deque()
7. X1 = x.Deque() 3 Dat oy
6. Yy.Enque(yl) 2 \Wai 10. Ac
5. Xx.Enque(x1l) 1. Wai 9. Wa 16. SetFlag(6)
——————— . SetFla
4. DataCopy(yl) 15. DataCopy(zl)
3. DataCopy(x1l)
2. yl = y.AllocTensor() DMA —> VEC IN —* ALU [— VEC_OUT —* DMA
1. x1 = x.AllocTensor()

Appendix B: The Processing Flow of AllocTensor / FreeTensor Lis e E xR

Shanghai Innovation Institute

AllocTensor:WaitFlag(4)
DMA DataCopy(x1) DataCopy(x1)

AllocTensor:WaitFlag(6)

ALU Add(zl, x1, yl) Add(zl, x1, yl)

FreeTensor:SetFlag(4)

FreeTensor:SetFlag(6)

DMA DataCopy(zl)

y
Acknowledgement S LEoEsR

Shanghai Innovation Institute

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and
institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.
- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely
our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

24

System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute

	Slide 1: NPU Architecture & Ascend Programming
	Slide 2: Recap: Overview of Machine Learning Systems
	Slide 3
	Slide 4
	Slide 5: NPU AI Core Architecture
	Slide 6: Disaggregated AI Core Architecture (910 B / C)
	Slide 7: Discussion: comparison between NPU and GPU
	Slide 8
	Slide 9: Recap: Five-Stage Pipeline in CPU
	Slide 10: Ascend C Programming for AIV
	Slide 11: Pseudocode for AIV Programming
	Slide 12: Pipeline of AIV
	Slide 13: Ascend C Programming for AIC
	Slide 14: Pseudocode for AIC Programming
	Slide 15: Ascend C Programming for Fused Operator
	Slide 16: Pseudocode for Fused Operator
	Slide 17: Programming Paradigm
	Slide 18: Appendix A: The Processing Flow of Enque / Deque
	Slide 19: Appendix A: The Processing Flow of Enque / Deque
	Slide 20: Appendix A: The Processing Flow of Enque / Deque
	Slide 21: Appendix B: The Processing Flow of AllocTensor / FreeTensor
	Slide 22: Appendix B: The Processing Flow of AllocTensor / FreeTensor
	Slide 23: Appendix B: The Processing Flow of AllocTensor / FreeTensor
	Slide 24: Acknowledgement
	Slide 25: Thanks

