
System for Artificial Intelligence Machine Learning Compilation

Siyuan Feng
Shanghai Innovation Institute

OUTLINE

01

▶ Overview of ML Compilation

02

▶ Example ML Compilation Flow

01

Overview of ML Compilation

ML System Optimization Problem

AI Applications

ResNet, Bert, Stable Diffusion

Large Language Models

Scenario

Servers and PC

Mobile

Specialized
Libraries

cuDNN

MIOpen

CANN

ARM-
Compute

CoreML

Target
Hardware

NVIDIA GPU

AMD GPU

HUAWEI
Ascend

ARM CPU

Apple Silicon

Specialized libraries for each backend (labor intensive)
Hard to be optimal for various models

ML Model Deployment Optimization Problem

AI Applications

ResNet, Bert, Stable Diffusion

Large Language Models

Scenario

Servers and PC

Mobile

ML Compiler

Machine Learning Compilation

Target
Hardware

NVIDIA GPU

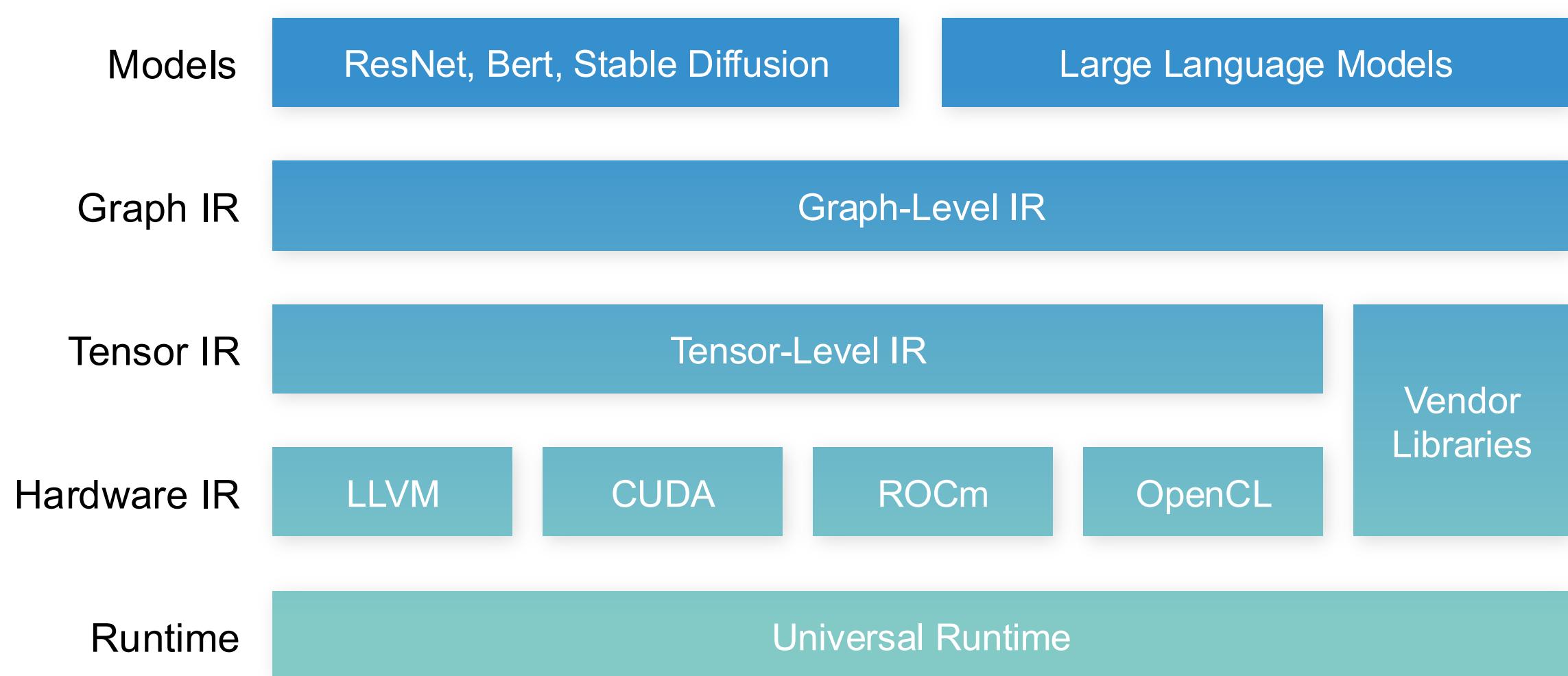
AMD GPU

HUAWEI
Ascend

ARM CPU

Apple Silicon

Machine Learning Compilation Abstractions



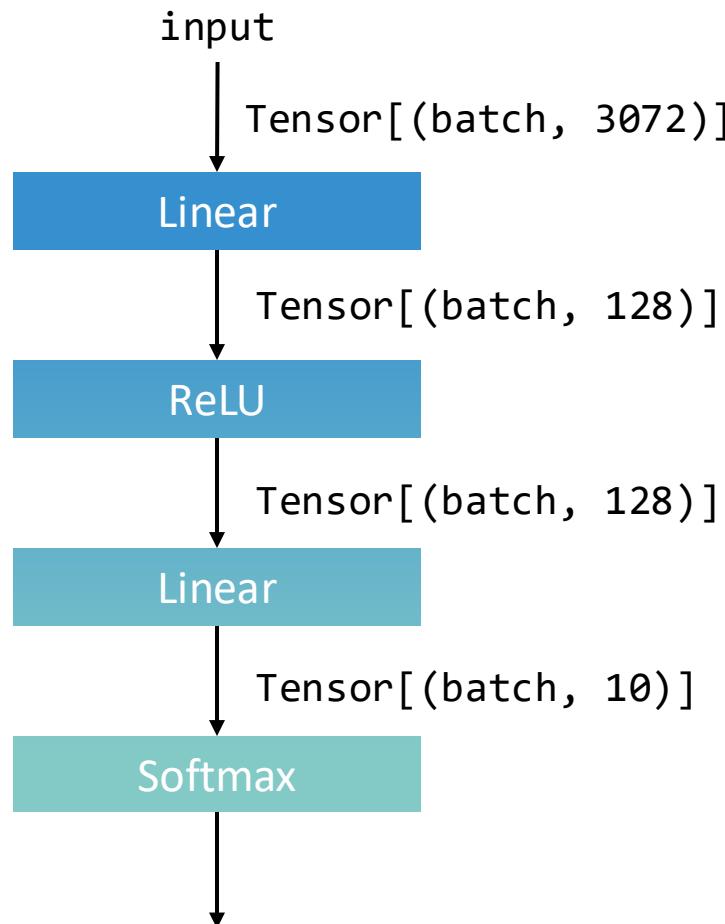
- There are many equivalent ways to run the same model execution.

The common theme of MLC is optimization in different forms:

- Minimize memory usage.
- Minimize dependencies.
- Improve execution efficiency.
- Scaling to multiple heterogeneous nodes.

•

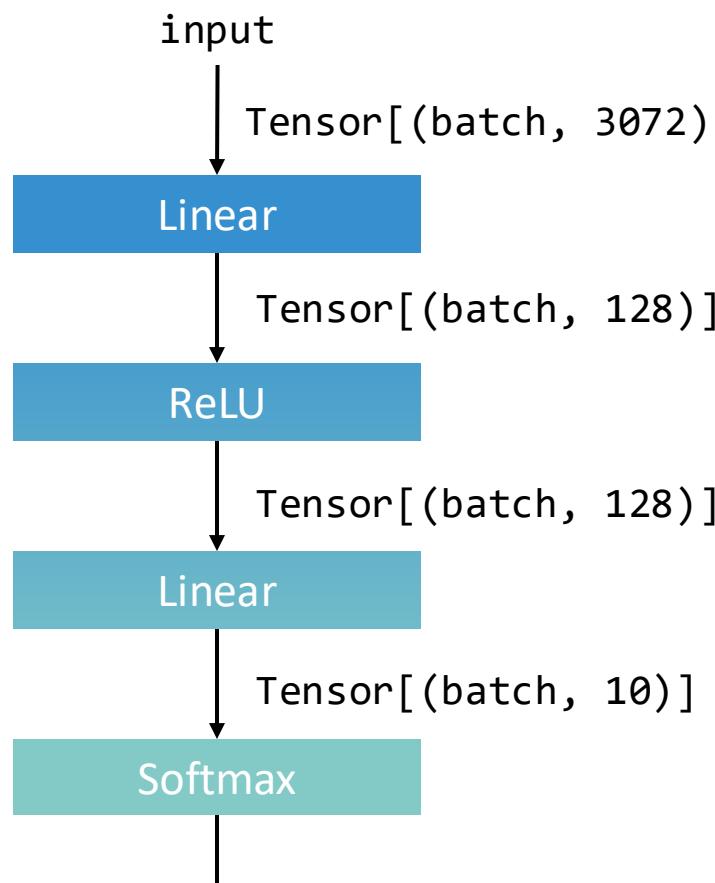
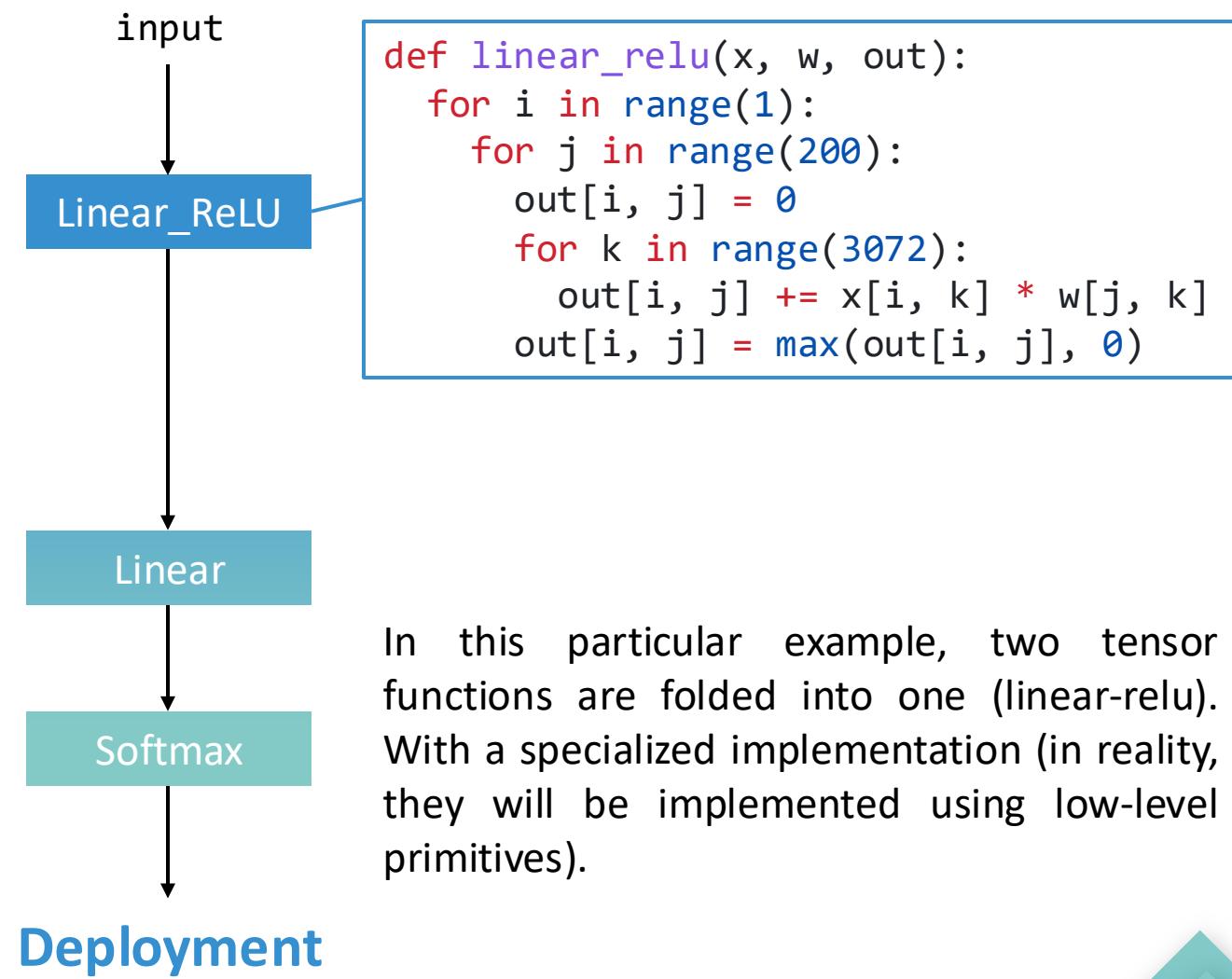
Key Elements in Machine Learning Compilation



Tensor: multi-dimensional array that stores the input, output and intermediate results of model executions.

Tensor Functions that encodes computations among the input/output. Note that a tensor function can contain multiple operations

Example Compilation Process

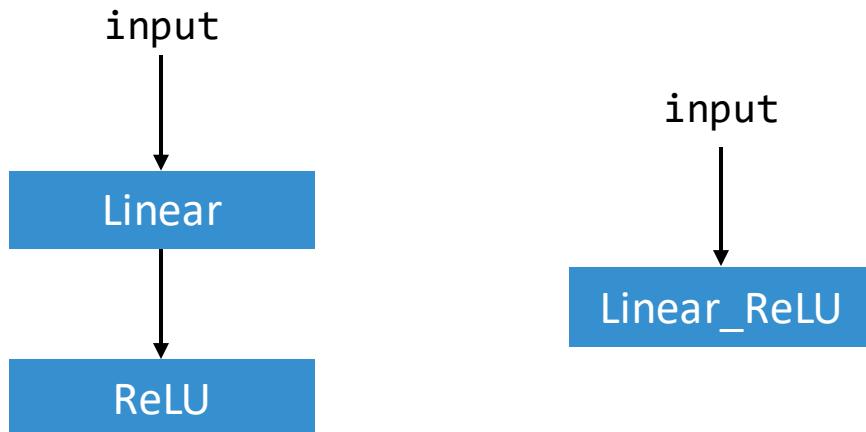


Development

Deployment

Abstraction and Implementation

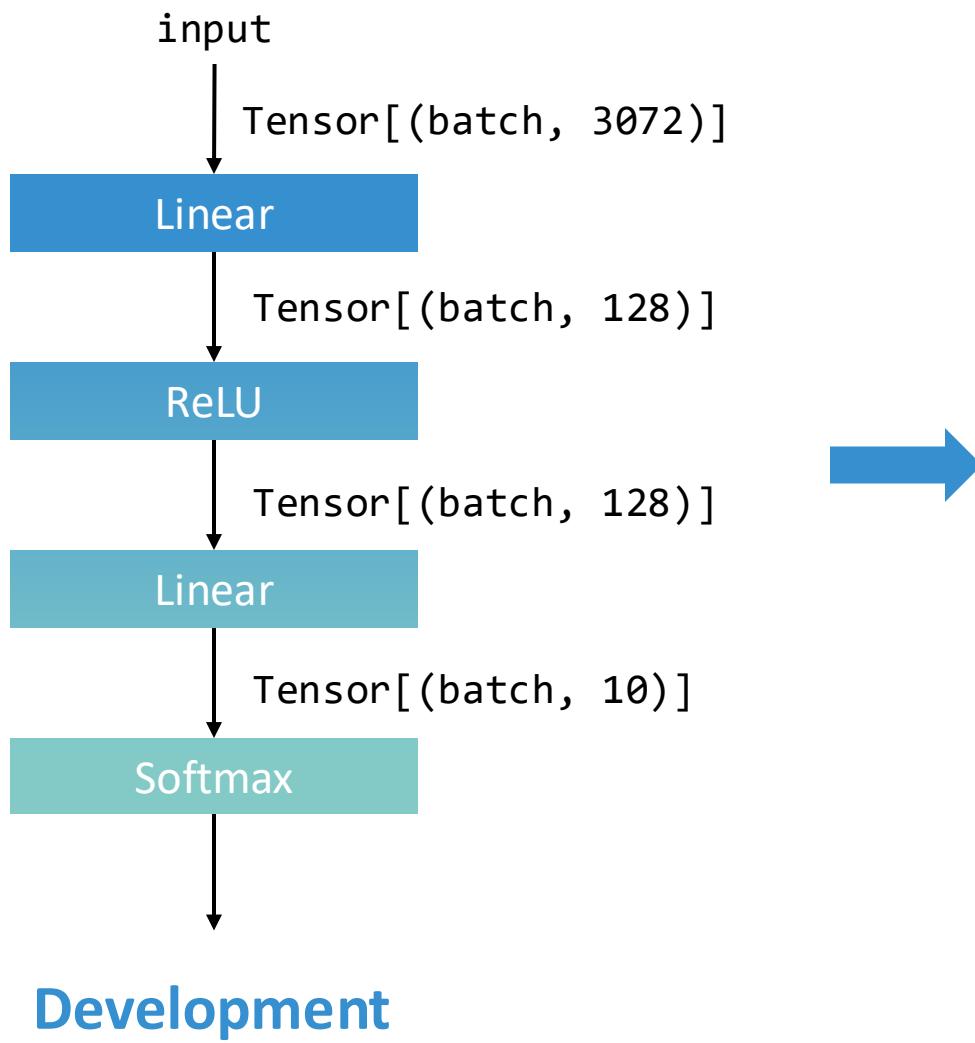
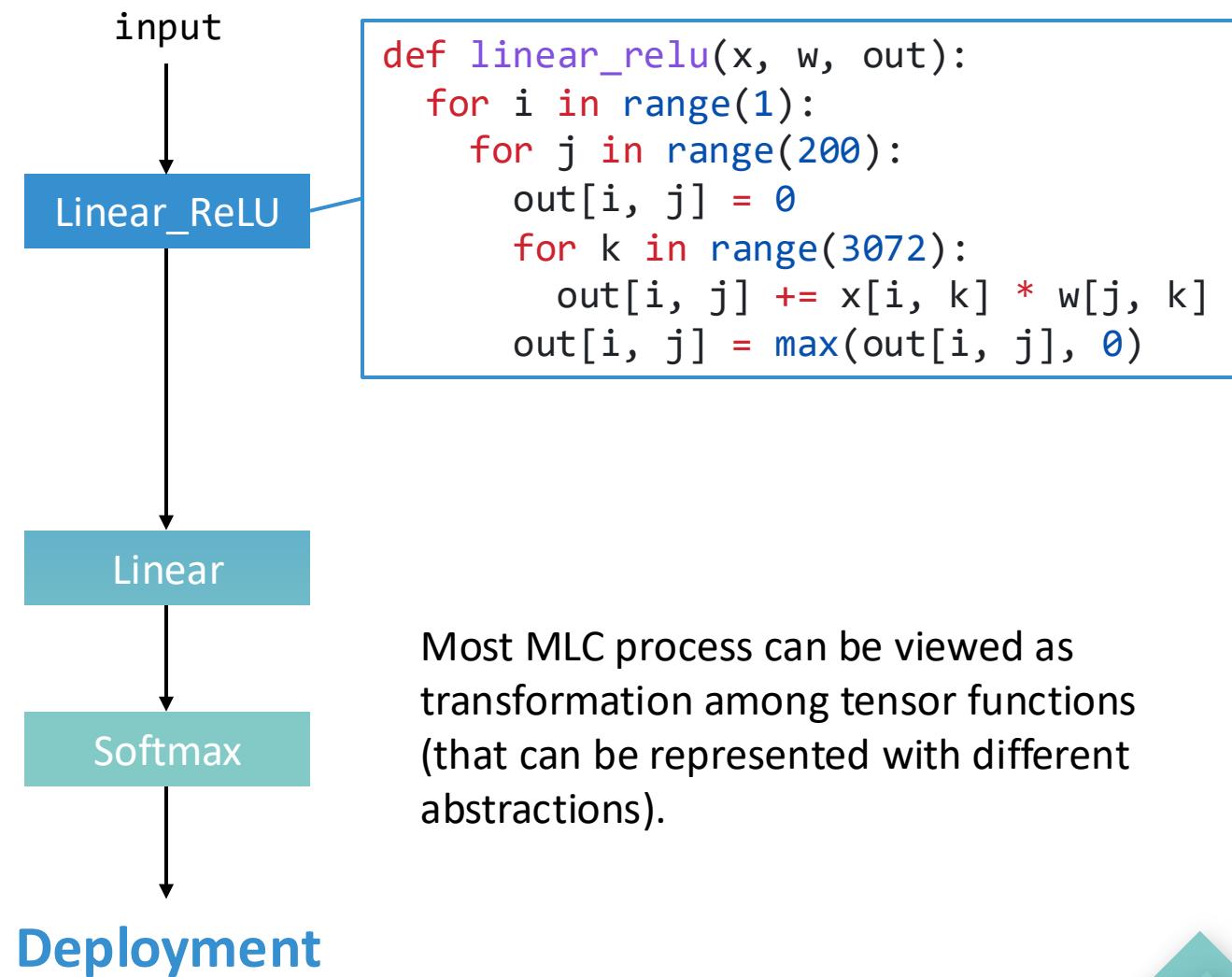
- **Abstraction** refers to different ways to represent the same system interface (tensor function)



```
def linear_relu(x, w, out):  
    for i in range(1):  
        for j in range(200):  
            out[i, j] = 0  
            for k in range(3072):  
                out[i, j] += x[i, k] * w[j, k]  
            out[i, j] = max(out[i, j], 0)
```

- Three abstraction ways to represent the same tensor function (`linear_relu`), each providing a different level of details. In practice, we usually say that the more specialized version is an **implementation** of higher-level abstraction.

MLC as Tensor Function Transformation (with different abstractions)

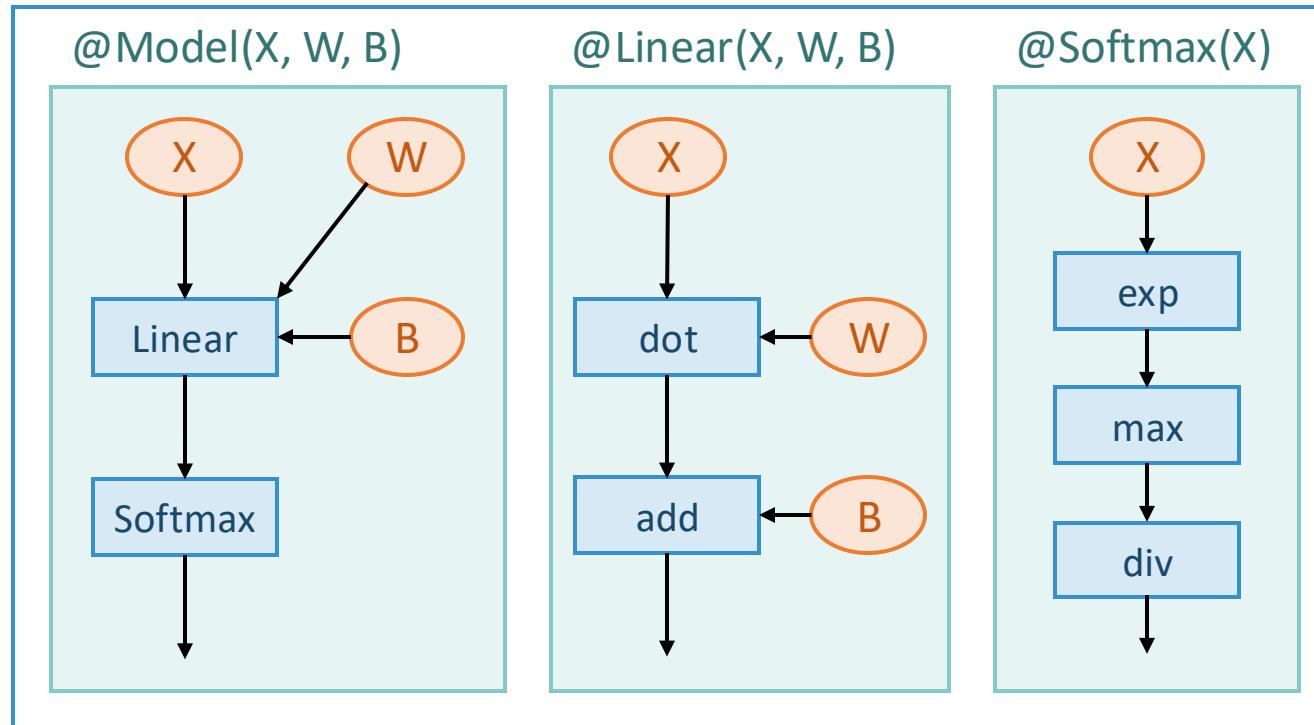


Most MLC process can be viewed as transformation among tensor functions (that can be represented with different abstractions).

02

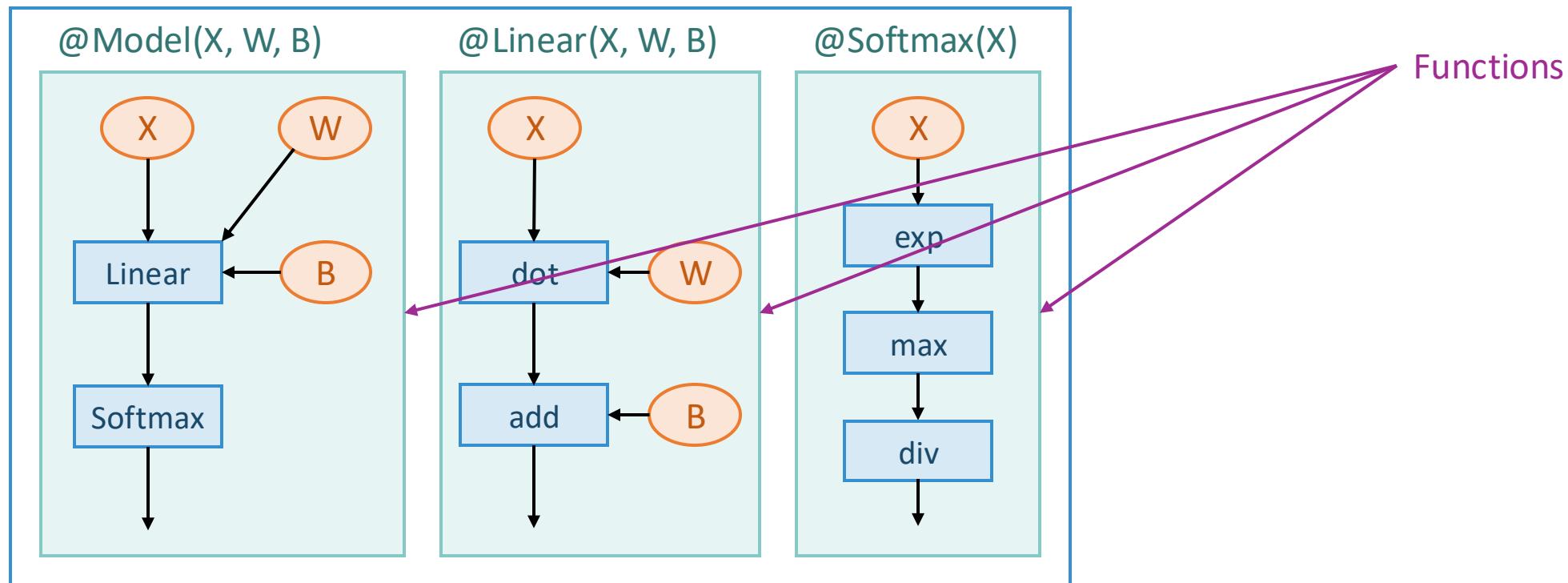
Example ML Compilation Flow

Compiler Representation of a ML Model

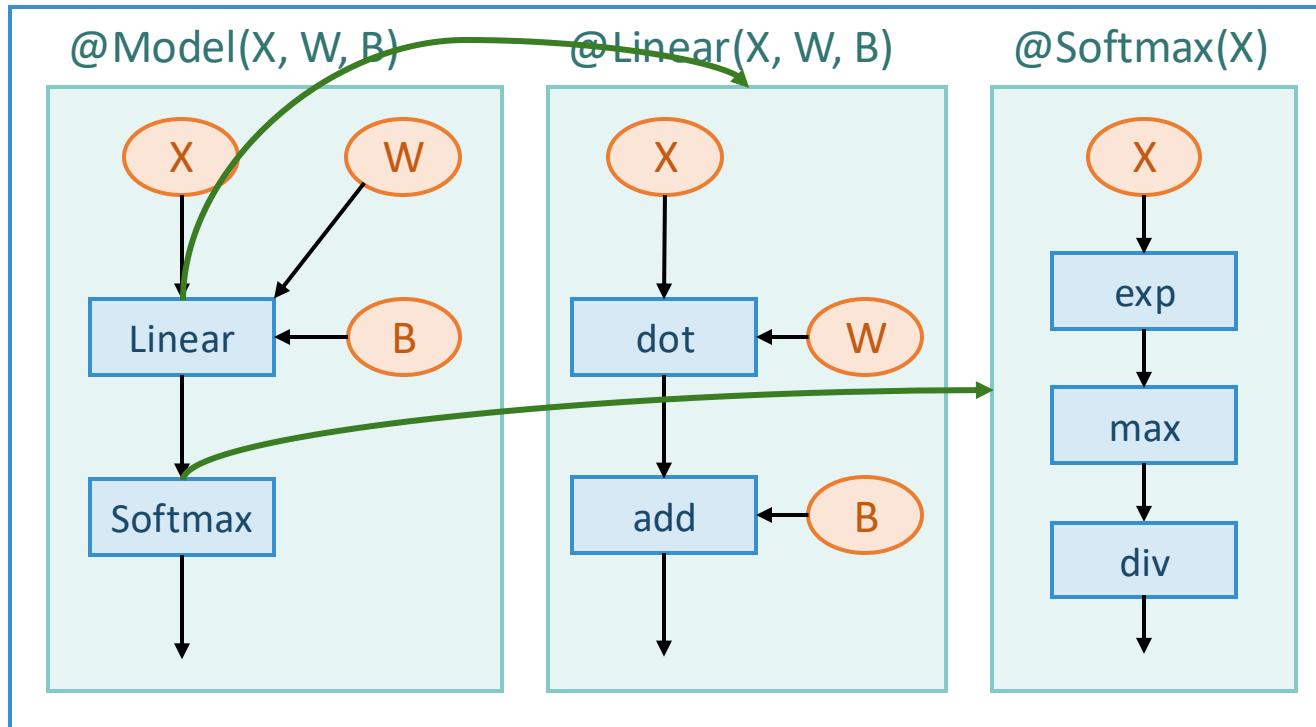


IRModule:
a collection of interdependent functions

Compiler Representation of a ML Model



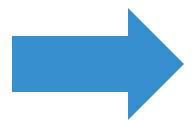
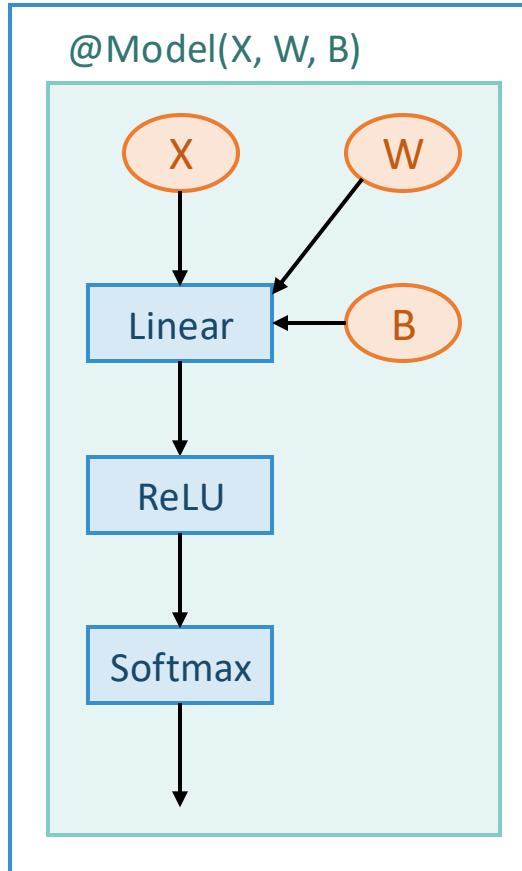
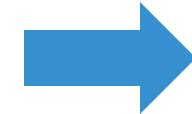
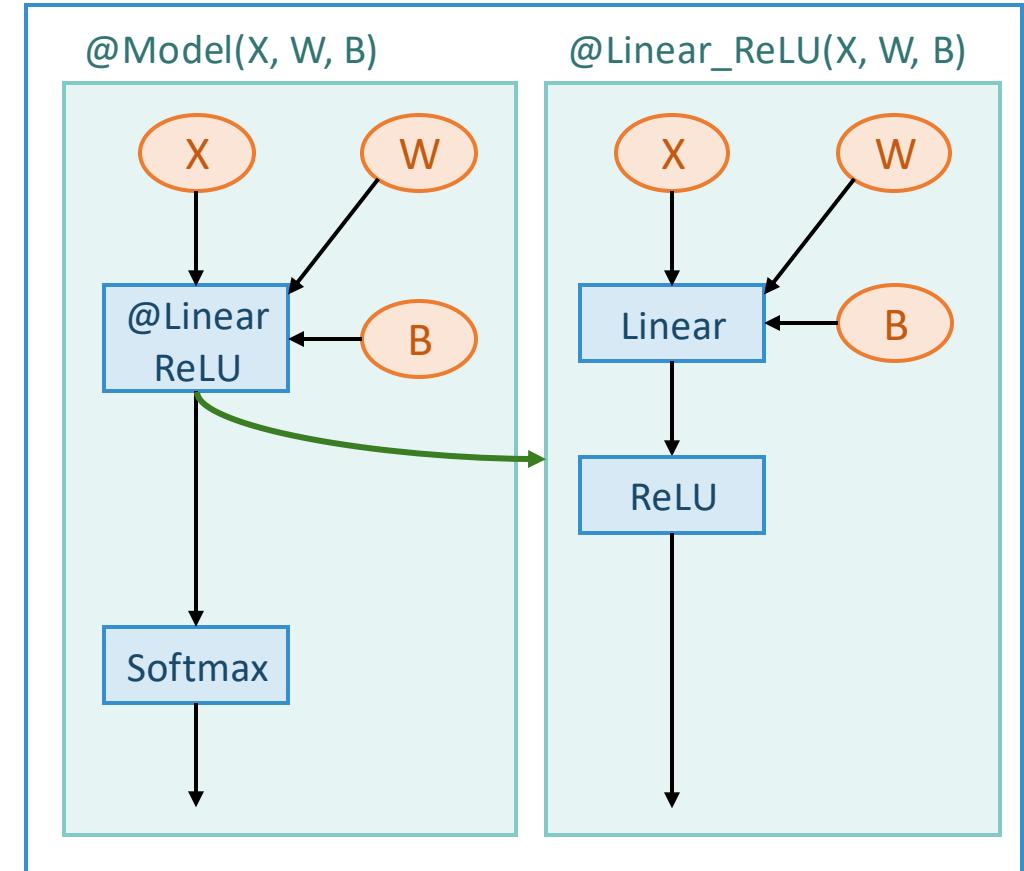
Compiler Representation of a ML Model



Function calls between
models and functions

Example Flow: High-Level Transformations

Models

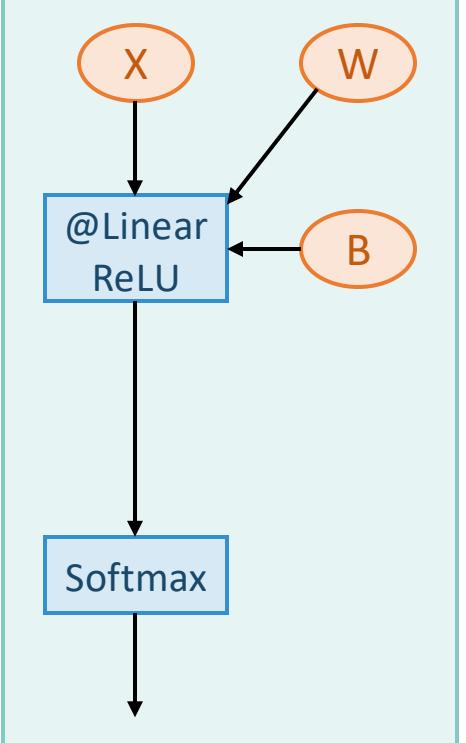


IRModule

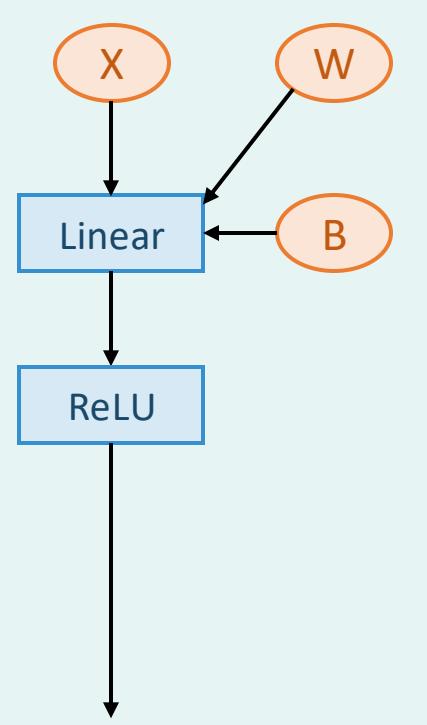
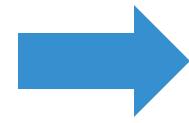
IRModule

Example Flow: Lowering to Loop IR

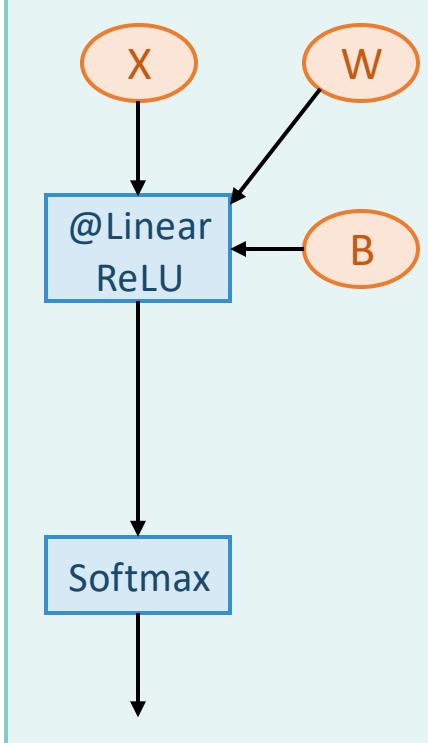
@Model(X, W, B)



@Linear_ReLU(X, W, B)



@Model(X, W, B)



@Linear_ReLU(X, W, B)

```

for i, j in grid(m, n):
    Y[i, j] = 0

for i, j, k in grid(m, n, k):
    Y[i, j] += X[i, k] * W[j, k]

for i, j in grid(m, n):
    Z[i, j] = Y[i, j] + B[j]

for i, j in grid(m, n):
    O[i, j] = max(0, Z[i, j])

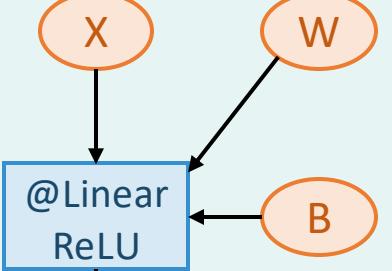
return O
  
```

IRModule

IRModule

Example Flow: Low Level Transformations

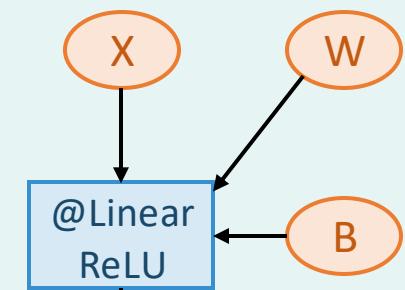
@Model(X, W, B)



@Linear_ReLU(X, W, B)

```
for i, j in grid(m, n):  
    Y[i, j] = 0  
  
for i, j, k in grid(m, n, k):  
    Y[i, j] += X[i, k] * W[j, k]  
  
for i, j in grid(m, n):  
    Z[i, j] = Y[i, j] + B[j]  
  
for i, j in grid(m, n):  
    O[i, j] = max(0, Z[i, j])  
  
return O
```

@Model(X, W, B)



@Linear_ReLU(X, W, B)

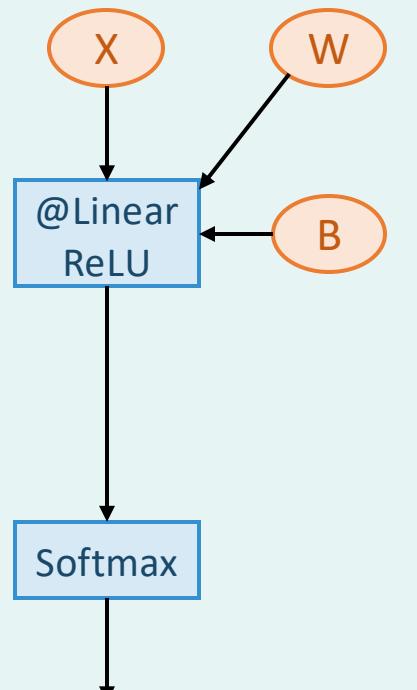
```
for i, j in grid(m, n):  
    Y[i, j] = B[j]  
  
for k in range(k):  
    Y[i, j] += X[i, k] * W[j, k]  
  
O[i, j] = max(0, Y[i, j])  
  
return O
```

IRModule

IRModule

Example Flow: CodeGen and Execution

@Model(X, W, B)



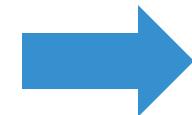
@Linear_ReLU(X, W, B)

```
for i, j in grid(m, n):
    Y[i, j] = B[j]

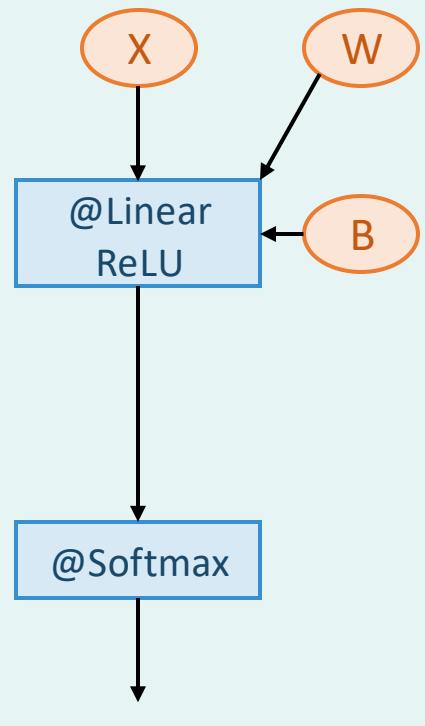
    for k in range(k):
        Y[i, j] += X[i, k] * W[j, k]

    O[i, j] = max(0, Y[i, j])

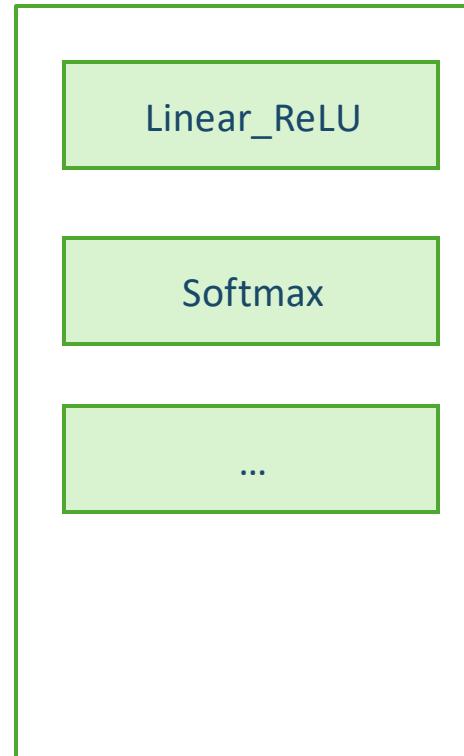
return O
```



@Model(X, W, B)



Compiled Op Functions



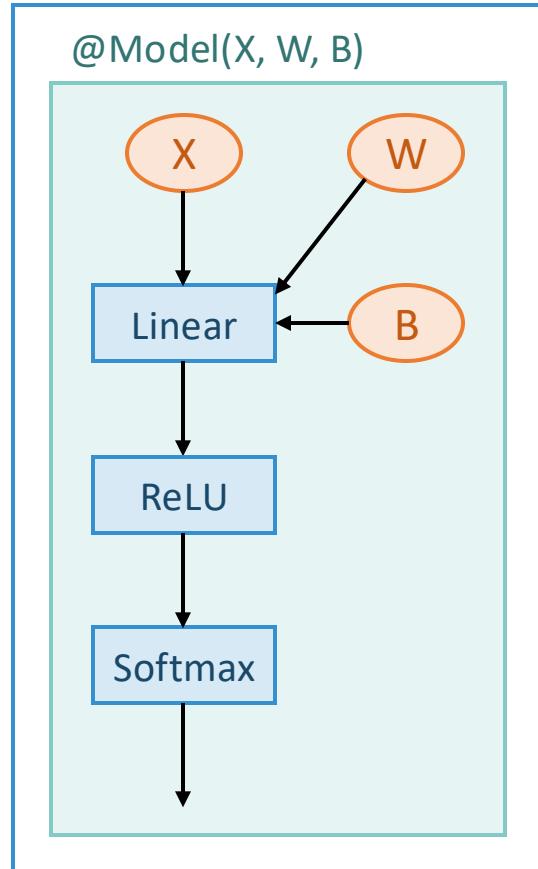
IRModule

Runtime Module

Discussion

- What are possible ways to represent a function in ML Compiler
- The possible set of optimizations we can perform in each type of representations.

High-level IR and Optimizations



- Computation graph(or graph-like) representation
- Each node is a tensor operator(e.g. convolution)
- Can be transformed (e.g. fusion) and annotated (e.g. device placement)
- Most ML frameworks have this layer

Low-level Code Optimization

```
for y, x, k in grid(64, 64, 64):  
    C[y, x] += A[y, k] * B[k, x]
```

```
for yo, xo, ko in grid(16, 16, 16):  
    block  
    for y, x, k in grid(4, 4, 4):  
        C[by*4+y, bx*4+x] +=  
            A[by*4+y, bk*4+k] * B[bk*4+k, bx*4+x]
```

Tensorized body
(matmul4x4)
isolated from the
outer loop nests

Transform loops with
tensorized operations

Tensorized Programs

```
for yo, xo, k in grid(4, 4, 16):  
    for yi, xi in grid(4, 4):  
        block  
        Tensorized body (matmul4x4)
```

Key Ideas

- Divide problem into sub-tensor computation blocks
- Generalize loop optimization for tensorized computation
- Combination of the above approaches in any order

Option 0: Tensorized body (matmul4x4)

```
for y, x in grid(4, 4):  
    C[by*16+y, bx*16+x] +=  
        accel.dot(A[by*4+y, bk*4:bk*4+4],  
                  B[bk*4:bk*4+4, bx*4+x])
```

Option 1: Tensorized body (matmul4x4)

```
for y, x, k in grid(4, 4, 4):  
    C[by*4+y, bx*4+x] +=  
        A[by*4+y, bk*4+k] *  
        B[bk*4+k, bx*4+x]
```

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation slides, has been significantly influenced and inspired by the excellent work of instructors and institutions who have shared their materials openly. We wish to extend our sincere acknowledgement and gratitude to the following courses, which served as invaluable references and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by **Tianqi Chen** and **Zhihao Jia** at **CMU**.
- Advanced Topics in Machine Learning (Systems)[CS6216], by **Yao Lu** at **NUS**

While these materials provided a foundational blueprint and a wealth of insightful examples, all content herein has been adapted, modified, and curated to meet the specific learning objectives of our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely our own responsibility. We are profoundly grateful for the contributions of the educators listed above, whose dedication to teaching and knowledge-sharing has made the creation of this course possible.

System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute
