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Al Applications ResNet, Bert, Stable Diffusion Large Language Models
ARM }
Compute |
NVIDIA GPU AMD GPU n LAl ARM CPU Apple Silicon
Ascend

' Specialized libraries for each backend (labor intensive)
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Models ResNet, Bert, Stable Diffusion Large Language Models
Graph IR Graph-Level IR
Tensor IR Tensor-Level IR
Vendor
Libraries
Hardware IR LLVM CUDA OpenCL

Runtime Universal Runtime
N
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ML Compilation Goals S imumsR
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* There are many equivalent ways to run the same model execution.
The common theme of MLC is optimization in different forms:
* Minimize memory usage.
 Minimize dependencies.
* Improve execution efficiency.

e Scaling to multiple heterogeneous nodes.
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input

Tensor[ (batch, 3072)]
Linar Tensor: multi-dimensional array that
stores the input, output and intermediate
results of model executions.

Tensor[ (batch, 128)]

RelU

Tensor[ (batch, 128)]
v Tensor Functions that encodes

computations among the input/output.
Note that a tensor function can contain
multiple operations

Tensor[ (batch, 10)]

AN



Example Compilation Process
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Tensor[ (batch, 3072)]
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Linear

Tensor[ (batch, 128)]

Tensor[ (batch, 10)]
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input

v

Linear_RelU

v

Deployment

def linear relu(x, w, out):
for 1 in range(1l):
for j in range(200):
out[i, j] = ©
for k in range(3072):
out[i, j] += x[i, k] * w[j, k]
out[i, j] = max(out[i, j], @)

In this particular example, two tensor
functions are folded into one (linear-relu).
With a specialized implementation (in reality,
they will be implemented using low-level
primitives).
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* Abstraction refers to different ways to represent the same system interface
(tensor function)

input

input def line?r_relu(x, w, out):
for i in range(1):
l for j in range(200):
out[i, j] = ©

Linear RelU for k in range(3072):
- OUt[i) j] += X[i) k] * W[j) k]

out[i, j] = max(out[i, j], 9)

Linear

* Three abstraction ways to represent the same tensor function (linear relu),
each providing a different level of details. In practice, we usually say that the
more specialized version is an implementation of higher-level abstraction.
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WLC as Tensor Function Transformation L F s e e o
(With different abstractions) Shanghai Innovation Institute

i t input
e P def linear relu(x, w, out):
Tensor[ (batch, 3072)] fO; i %n.range(lz;ee)
y ! or j in range :
Linear Linear RelU out[i, j] = ©
- for k in range(3072):

Tensor[ (batch, 128)] out[i, j] += x[i, k] * w[j, k]

out[i, j] = max(out[i, j], @)

Linear
Tensor[(batch, 10)] Most MLC process can be viewed as
v transformation among tensor functions
Softmax (that can be represented with different

abstractions).

Development Deployment '
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Example ML Compilation Flow
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@Model(X, W, B) @Linear(X, W, B) @Softmax(X)

® @/ ® ©

IRModule:

\ 4 \ 4 exp ) . .
Linear dot 4—@ a collection of interdependent functions
Softmax add L4

L



' Compiler Representation of a ML Model Lo B 2R

Shanghai Innovation Institute

@Model(X, W, B) @Linear(X, W, B) @Softmax(X) _
Functions

O @[ © o

/

///)"p///

\ 4 \ 4 e

Linear 4—‘ @Vj

G (pgt/ ‘// 4 rd

max

Softmax add
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@Model(X, VV/B-)r @Lin.eaL&X, W, B) @Softmax(X)

W @ 0

Function calls between

\ 4 exp .
Linear dot models and functions

Softmax add

div
l ,, i




' Example Flow: High-Level Transformations
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ONC
Lin"ear

RelLU

Softmax

!

@Model(X, W, B)

@Linear_RelLU(X, W, B)

<

RelLU

[ @®

W

Softmax

RelLU

IRModule

IRModule

L



Example Flow: Lowering to Loop IR Lo E 2R
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@Model(X, W, B) @Linear_RelLU(X, W, B) @Model(X, W, B) @Linear_RelLU(X, W, B)

® @/ ® @ O

@Linear Linear @Linear
RelLU RelLU

for i, j in grid(m, n):
Y[i, j] = o

for i, j, k in grid(m, n, k):
Y[iJ j] += X[i: k] * W[j, k]

for i, j in grid(m, n):
Z[i, j] = Y[i, j] + B[]]

for i, j in grid(m, n):
o[i, j] = maX(eJ Z[1i, j])

return O

IRModule IRModule
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@Model(X, W, B) @Linear_RelLU(X, W, B) @Model(X, W, B) @Linear_RelLU(X, W, B)
'for i, j in grid(m, n): ‘for i, j in grid(m, n): |
(x)  (w Y[i, 51 = @ O Y[i, 31 = B3]
! for i, j, k in grid(m, n, k): ! for k in range(k):
Y[i) j] += X[iJ k] * W[j, k] Y[i: j] +=

@Linear
RelLU

@Linear
RelLU

X[1, k] * W[3, K]

o[i, j] = max(@) Y[i, j])

for i, j in grid(m, n): return O

Oo[i, j] = max(@, Z[1i, j])

return O

|
|
|
|
|
|
|
|
|
|
for i, j in grid(m, n): |
Z[1, j] = Y[i, j] + B[]] !
|
|
|
|
|
|
|
|
|
|
|
|
|

IRModule IRModule




' Example Flow: CodeGen and Execution £ B8l 8 % [k

Shanghai Innovation Institute

@Model(X, W, B) @Linear_RelLU(X, W, B) @Model(X, W, B) Compiled Op Functions
O ‘for i, j in grid(m, n): '
X W Y[i, 31 = B[] O W
: 1 3] Linear_RelU
! for k in range(k): !
Y[i: j] +=

@Linear
RelLU

@Linear
RelLU Softmax

X[1, k] * W[3, K]

Oo[i, j] = max(@, Y[1i, j])

return O

Softmax

______________________

IRModule Runtime Module
19 A
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* What are possible ways to represent a function in ML Compiler

* The possible set of optimizations we can perform in each type of
representations.

20
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High-level IR and Optimizations £ B 8l 8§ % [
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@Model(X, W, B) * Computation graph(or graph-like) representation
C? W * Each node is a tensor operator(e.g. convolution)
e * Can be transformed (e.g. fusion) and annotated

(e.g. device placement)

ReLU * Most ML frameworks have this layer

Softmax

21



Low-level Code Optimization L i el 8] % kR
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for y, x, k in grid(64, 64, 64):
C[y) X] += A[y.v k] * B[kJ X]

Key Ideas

. , - Divide problem into sub-tensor
for yo, xo, ko in grid(16, 16, 16): Tensorized body computation blocks

(matmulxa) -~ Generalize loop optimization for

V

| . : . isolated f h : .
fory, x, k in grid(4, 4, 4): b tensorized computation

outer loop nests ) )
P - Combination of the above
approaches in any order

_____________________________________________

|
|
' C[by*4+y, bx*4+x] += |
| A[by*a+y, bk*a+k] * B[bk*a+k, bx*4+x] !

Transform loops with
’ tensorized operations

. . Option @: Tensorized bod matmul4x4 Option 1: Tensorized bod matmul4x4
Tensorized Programs o OP y ( ) Op y ( )

for y, x in grid(4, 4): for y, x, k in grid(4, 4, 4):

for yo, xo, k in grid(4, 4, 16):
C[by*16+y, bx*16+x] += C[by*4+y, bx*4+x] +=

for yi, xi in grid(4, 4): /
S accel.dot(A[by*4+y, bk*4:bk*4+4], A[by*4+y, bk*4+k] *
oTbka:bkasa, bxraix]) | BLbkMsk, bxtde

Tensorized body (matmulédx4)
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