
System for Artificial Intelligence

Machine Learning Compilation

Siyuan Feng

Shanghai Innovation Institute

O U T L I N E

01

02

2

Overview of ML Compilation

Example ML Compilation Flow

3

01
Overview of ML Compilation

ML System Optimization Problem

4

AI Applications

Scenario

Specialized

Libraries

Target

Hardware

ResNet, Bert, Stable Diffusion

cuDNN
ARM-

Compute
CoreML

NVIDIA GPU

MIOpen

AMD GPU ARM CPU Apple Silicon

Servers and PC Mobile

CANN

HUAWEI

Ascend

Large Language Models

Specialized libraries for each backend (labor intensive)

Hard to be optimal for various models

ML Model Deployment Optimization Problem

5

AI Applications

Scenario

ML Compiler

Target

Hardware

Machine Learning Compilation

NVIDIA GPU AMD GPU ARM CPU Apple Silicon

Servers and PC Mobile

HUAWEI

Ascend

ResNet, Bert, Stable Diffusion Large Language Models

Machine Learning Compilation Abstractions

6

Graph IR

Tensor IR

Hardware IR

Runtime

Models

Graph-Level IR

Universal Runtime

Tensor-Level IR

Vendor

Libraries

LLVM CUDA ROCm OpenCL

ResNet, Bert, Stable Diffusion Large Language Models

ML Compilation Goals

• There are many equivalent ways to run the same model execution.

The common theme of MLC is optimization in different forms:

• Minimize memory usage.

• Minimize dependencies.

• Improve execution efficiency.

• Scaling to multiple heterogeneous nodes.

•

7

Key Elements in Machine Learning Compilation

8

Linear

ReLU

Linear

Softmax

input

Tensor[(batch, 128)]

Tensor[(batch, 3072)]

Tensor[(batch, 128)]

Tensor[(batch, 10)]

Tensor: multi-dimensional array that
stores the input, output and intermediate
results of model executions.

Tensor Functions that encodes
computations among the input/output.
Note that a tensor function can contain
multiple operations

Example Compilation Process

9

Development

Linear

ReLU

Linear

Softmax

input

Tensor[(batch, 128)]

Tensor[(batch, 3072)]

Tensor[(batch, 128)]

Tensor[(batch, 10)]

Linear_ReLU

Linear

Softmax

input
def linear_relu(x, w, out):

for i in range(1):
for j in range(200):

out[i, j] = 0
for k in range(3072):

out[i, j] += x[i, k] * w[j, k]
out[i, j] = max(out[i, j], 0)

Deployment

In this particular example, two tensor
functions are folded into one (linear-relu).
With a specialized implementation (in reality,
they will be implemented using low-level
primitives).

Abstraction and Implementation

• Abstraction refers to different ways to represent the same system interface
(tensor function)

• Three abstraction ways to represent the same tensor function (linear_relu),
each providing a different level of details. In practice, we usually say that the

more specialized version is an implementation of higher-level abstraction.

10

Linear

ReLU

input

Linear_ReLU

input def linear_relu(x, w, out):
for i in range(1):

for j in range(200):
out[i, j] = 0
for k in range(3072):

out[i, j] += x[i, k] * w[j, k]
out[i, j] = max(out[i, j], 0)

MLC as Tensor Function Transformation
(with different abstractions)

11

Development

Linear

ReLU

Linear

Softmax

input

Tensor[(batch, 128)]

Tensor[(batch, 3072)]

Tensor[(batch, 128)]

Tensor[(batch, 10)]

Linear_ReLU

Linear

Softmax

input
def linear_relu(x, w, out):

for i in range(1):
for j in range(200):

out[i, j] = 0
for k in range(3072):

out[i, j] += x[i, k] * w[j, k]
out[i, j] = max(out[i, j], 0)

Deployment

Most MLC process can be viewed as
transformation among tensor functions
(that can be represented with different
abstractions).

12

02
Example ML Compilation Flow

Compiler Representation of a ML Model

13

X W

BLinear

Softmax

X

W

B

dot

add

X

exp

max

div

@Model(X, W, B) @Linear(X, W, B) @Softmax(X)

IRModule:
a collection of interdependent functions

X W

BLinear

Softmax

X

W

B

dot

add

X

exp

max

div

@Model(X, W, B) @Linear(X, W, B) @Softmax(X)

Compiler Representation of a ML Model

14

Functions

X W

BLinear

Softmax

X

W

B

dot

add

X

exp

max

div

@Model(X, W, B) @Linear(X, W, B) @Softmax(X)

Compiler Representation of a ML Model

15

Function calls between
models and functions

Example Flow: High-Level Transformations

16

X W

BLinear

Softmax

ReLU

@Model(X, W, B)

Models

@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

X W

BLinear

ReLU

IRModule IRModule

Example Flow: Lowering to Loop IR

17

@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

X W

BLinear

ReLU

@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

for i, j in grid(m, n):
Y[i, j] = 0

for i, j, k in grid(m, n, k):
Y[i, j] += X[i, k] * W[j, k]

for i, j in grid(m, n):
Z[i, j] = Y[i, j] + B[j]

for i, j in grid(m, n):
O[i, j] = max(0, Z[i, j])

return O

IRModuleIRModule

Example Flow: Low Level Transformations

18

@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

for i, j in grid(m, n):
Y[i, j] = B[j]

for k in range(k):
Y[i, j] +=
X[i, k] * W[j, k]

O[i, j] = max(0, Y[i, j])

return O

@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

for i, j in grid(m, n):
Y[i, j] = 0

for i, j, k in grid(m, n, k):
Y[i, j] += X[i, k] * W[j, k]

for i, j in grid(m, n):
Z[i, j] = Y[i, j] + B[j]

for i, j in grid(m, n):
O[i, j] = max(0, Z[i, j])

return O

IRModule IRModule

Example Flow: CodeGen and Execution

19

@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

for i, j in grid(m, n):
Y[i, j] = B[j]

for k in range(k):
Y[i, j] +=
X[i, k] * W[j, k]

O[i, j] = max(0, Y[i, j])

return O

@Model(X, W, B) Compiled Op Functions

X W

B
@Linear

ReLU

@Softmax

Linear_ReLU

Softmax

…

IRModule Runtime Module

Discussion

• What are possible ways to represent a function in ML Compiler

• The possible set of optimizations we can perform in each type of

representations.

20

High-level IR and Optimizations

21

X W

BLinear

Softmax

ReLU

@Model(X, W, B) • Computation graph(or graph-like) representation

• Each node is a tensor operator(e.g. convolution)

• Can be transformed (e.g. fusion) and annotated
(e.g. device placement)

• Most ML frameworks have this layer

Low-level Code Optimization

22

Tensorized Programs

for yo, xo, k in grid(4, 4, 16):

for yi, xi in grid(4, 4):

for y, x, k in grid(64, 64, 64):

C[y, x] += A[y, k] * B[k, x]

block

Tensorized body (matmul4x4)

Transform loops with
tensorized operations

for y, x in grid(4, 4):

C[by*16+y, bx*16+x] +=

accel.dot(A[by*4+y, bk*4:bk*4+4],

B[bk*4:bk*4+4, bx*4+x])

Option 0: Tensorized body (matmul4x4)

for y, x, k in grid(4, 4, 4):

C[by*4+y, bx*4+x] +=

A[by*4+y, bk*4+k] *

B[bk*4+k, bx*4+x]

Option 1: Tensorized body (matmul4x4)

for yo, xo, ko in grid(16, 16, 16):

for y, x, k in grid(4, 4, 4):

 C[by*4+y, bx*4+x] +=

A[by*4+y, bk*4+k] * B[bk*4+k, bx*4+x]

Tensorized body
(matmul4x4)
isolated from the
outer loop nests

- Divide problem into sub-tensor
computation blocks

- Generalize loop optimization for
tensorized computation

- Combination of the above
approaches in any order

Key Ideas

block

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

23

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1: Machine Learning Compilation
	Slide 2
	Slide 3
	Slide 4: ML System Optimization Problem
	Slide 5: ML Model Deployment Optimization Problem
	Slide 6: Machine Learning Compilation Abstractions
	Slide 7: ML Compilation Goals
	Slide 8: Key Elements in Machine Learning Compilation
	Slide 9: Example Compilation Process
	Slide 10: Abstraction and Implementation
	Slide 11: MLC as Tensor Function Transformation (with different abstractions)
	Slide 12
	Slide 13: Compiler Representation of a ML Model
	Slide 14: Compiler Representation of a ML Model
	Slide 15: Compiler Representation of a ML Model
	Slide 16: Example Flow: High-Level Transformations
	Slide 17: Example Flow: Lowering to Loop IR
	Slide 18: Example Flow: Low Level Transformations
	Slide 19: Example Flow: CodeGen and Execution
	Slide 20: Discussion
	Slide 21: High-level IR and Optimizations
	Slide 22: Low-level Code Optimization
	Slide 23: Acknowledgement
	Slide 24: Thanks

