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ML System Optimization Problem
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AI Applications 

Scenario

Specialized 

Libraries

Target 

Hardware

ResNet, Bert, Stable Diffusion

cuDNN
ARM-

Compute
CoreML

NVIDIA GPU

MIOpen

AMD GPU ARM CPU Apple Silicon

Servers and PC Mobile

CANN

HUAWEI

Ascend

Large Language Models

Specialized libraries for each backend (labor intensive)

Hard to be optimal for various models



ML Model Deployment Optimization Problem
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AI Applications 

Scenario

ML Compiler

Target 

Hardware

Machine Learning Compilation

NVIDIA GPU AMD GPU ARM CPU Apple Silicon

Servers and PC Mobile

HUAWEI

Ascend

ResNet, Bert, Stable Diffusion Large Language Models



Machine Learning Compilation Abstractions
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Graph IR

Tensor IR

Hardware IR

Runtime

Models

Graph-Level IR

Universal Runtime

Tensor-Level IR

Vendor 

Libraries

LLVM CUDA ROCm OpenCL

ResNet, Bert, Stable Diffusion Large Language Models



ML Compilation Goals

• There are many equivalent ways to run the same model execution. 

The common theme of MLC is optimization in different forms:

• Minimize memory usage.

• Minimize dependencies.

• Improve execution efficiency.

• Scaling to multiple heterogeneous nodes.

•
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Key Elements in Machine Learning Compilation
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Linear

ReLU

Linear

Softmax

input

Tensor[(batch, 128)]

Tensor[(batch, 3072)]

Tensor[(batch, 128)]

Tensor[(batch, 10)]

Tensor: multi-dimensional array that
stores the input, output and intermediate
results of model executions.

Tensor Functions that encodes 
computations among the input/output. 
Note that a tensor function can contain 
multiple operations



Example Compilation Process
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Development

Linear

ReLU

Linear

Softmax

input

Tensor[(batch, 128)]

Tensor[(batch, 3072)]

Tensor[(batch, 128)]

Tensor[(batch, 10)]

Linear_ReLU

Linear

Softmax

input
def linear_relu(x, w, out):

for i in range(1):
for j in range(200):

out[i, j] = 0
for k in range(3072):

out[i, j] += x[i, k] * w[j, k]
out[i, j] = max(out[i, j], 0)

Deployment

In this particular example, two tensor
functions are folded into one (linear-relu).
With a specialized implementation (in reality,
they will be implemented using low-level
primitives).



Abstraction and Implementation

• Abstraction refers to different ways to represent the same system interface
(tensor function)

• Three abstraction ways to represent the same tensor function (linear_relu), 
each providing a different level of details. In practice, we usually say that the 

more specialized version is an implementation of higher-level abstraction.
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Linear

ReLU

input

Linear_ReLU

input def linear_relu(x, w, out):
for i in range(1):

for j in range(200):
out[i, j] = 0
for k in range(3072):

out[i, j] += x[i, k] * w[j, k]
out[i, j] = max(out[i, j], 0)



MLC as Tensor Function Transformation 
(with different abstractions)
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Development

Linear

ReLU

Linear

Softmax

input

Tensor[(batch, 128)]

Tensor[(batch, 3072)]

Tensor[(batch, 128)]

Tensor[(batch, 10)]

Linear_ReLU

Linear

Softmax

input
def linear_relu(x, w, out):

for i in range(1):
for j in range(200):

out[i, j] = 0
for k in range(3072):

out[i, j] += x[i, k] * w[j, k]
out[i, j] = max(out[i, j], 0)

Deployment

Most MLC process can be viewed as 
transformation among tensor functions 
(that can be represented with different 
abstractions).
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Example ML Compilation Flow



Compiler Representation of a ML Model
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X W

BLinear

Softmax

X

W

B

dot

add

X

exp

max

div

@Model(X, W, B) @Linear(X, W, B) @Softmax(X)

IRModule: 
a collection of interdependent functions



X W

BLinear

Softmax

X

W

B

dot

add

X

exp

max

div

@Model(X, W, B) @Linear(X, W, B) @Softmax(X)

Compiler Representation of a ML Model
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Functions



X W

BLinear

Softmax

X

W

B

dot

add

X

exp

max

div

@Model(X, W, B) @Linear(X, W, B) @Softmax(X)

Compiler Representation of a ML Model
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Function calls between 
models and functions



Example Flow: High-Level Transformations
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X W

BLinear

Softmax

ReLU

@Model(X, W, B)

Models

@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

X W

BLinear

ReLU

IRModule IRModule



Example Flow: Lowering to Loop IR
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@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

X W

BLinear

ReLU

@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

for i, j in grid(m, n):
Y[i, j] = 0

for i, j, k in grid(m, n, k):
Y[i, j] += X[i, k] * W[j, k]

for i, j in grid(m, n):
Z[i, j] = Y[i, j] + B[j]

for i, j in grid(m, n):
O[i, j] = max(0, Z[i, j])

return O

IRModuleIRModule



Example Flow: Low Level Transformations
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@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

for i, j in grid(m, n):
Y[i, j] = B[j]

for k in range(k):
Y[i, j] +=
X[i, k] * W[j, k]

O[i, j] = max(0, Y[i, j])

return O

@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

for i, j in grid(m, n):
Y[i, j] = 0

for i, j, k in grid(m, n, k):
Y[i, j] += X[i, k] * W[j, k]

for i, j in grid(m, n):
Z[i, j] = Y[i, j] + B[j]

for i, j in grid(m, n):
O[i, j] = max(0, Z[i, j])

return O

IRModule IRModule



Example Flow: CodeGen and Execution
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@Model(X, W, B) @Linear_ReLU(X, W, B)

X W

B
@Linear

ReLU

Softmax

for i, j in grid(m, n):
Y[i, j] = B[j]

for k in range(k):
Y[i, j] +=
X[i, k] * W[j, k]

O[i, j] = max(0, Y[i, j])

return O

@Model(X, W, B) Compiled Op Functions

X W

B
@Linear

ReLU

@Softmax

Linear_ReLU

Softmax

…

IRModule Runtime Module



Discussion

• What are possible ways to represent a function in ML Compiler

• The possible set of optimizations we can perform in each type of 

representations.
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High-level IR and Optimizations
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X W

BLinear

Softmax

ReLU

@Model(X, W, B) • Computation graph(or graph-like) representation

• Each node is a tensor operator(e.g. convolution)

• Can be transformed (e.g. fusion) and annotated 
(e.g. device placement)

• Most ML frameworks have this layer



Low-level Code Optimization
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Tensorized Programs

for yo, xo, k in grid(4, 4, 16):

for yi, xi in grid(4, 4):

for y, x, k in grid(64, 64, 64):

C[y, x] += A[y, k] * B[k, x]

block

Tensorized body (matmul4x4)

Transform loops with 
tensorized operations

for y, x in grid(4, 4):

C[by*16+y, bx*16+x] +=

accel.dot(A[by*4+y, bk*4:bk*4+4],

B[bk*4:bk*4+4, bx*4+x])

Option 0: Tensorized body (matmul4x4)

for y, x, k in grid(4, 4, 4):

C[by*4+y, bx*4+x] +=

A[by*4+y, bk*4+k] *

B[bk*4+k, bx*4+x]

Option 1: Tensorized body (matmul4x4)

for yo, xo, ko in grid(16, 16, 16):

  

for y, x, k in grid(4, 4, 4):

  C[by*4+y, bx*4+x] +=

A[by*4+y, bk*4+k] * B[bk*4+k, bx*4+x]

Tensorized body 
(matmul4x4)
isolated from the 
outer loop nests

- Divide problem into sub-tensor 
computation blocks

- Generalize loop optimization for 
tensorized computation

- Combination of the above 
approaches in any order

Key Ideas

block
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