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* Take a set of input sequence, predict the output sequence
Yi Y2 Y3  Ma

* Predict each output based on history: y, = f5(x1.¢)

* There are many ways to build up the predictive model
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* One approach is we can do “direct prediction”
Va

Direct model

* Challenge: different size inputs.
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* Try to maintain a "latent state" that is derived from history.

"

X1 X2 X3 X4

Y2 Y3 V4

* Challenge: The information is carried only through h;

AN
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* Generally refers to the approach that weighted combine individual states

Attention Output n n n n

Hidden states from

. X X X X
previous layer 1 2 3 4

* Intuitively s; is “attention score” that computes how relevant the position i’s
input is to this current hidden output There are different methods to decide how
attention score is being computed
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e Self attention refers to a particular form of attention mechanism.
Given three inputs Q, K, V € RT*4 (“queries”, “keys”, “values”)

 Define the self-attention as:

. QK"
SelfAttention(Q, K, V) = softmax 172 V



' A Closer Look at Self-Attention L5 el 83k

Shanghai Innovation Institute

 Use q;, k;, v; to refers to row t of the K matrix

* How to compute the output h; based
on g, K, V one timestep t
. * To keep presentation simple, we will

drop suffix t and just use g to refer to g,

T innextfewsiide

* Ask the following question:

e
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* Use q,, k;, v; to refers to row t of the K matrix

e Conceptually, we compute the output in
1 the following two steps:
- * Pre-softmax “attention score”
1

S, — —
Vd

* Weighed average via softmax

qk{

> exp(s;y) v;
Zj exp(sj)
* Intuition: s; computes the relevance of k; to the query g,

h = z softmax(s);v; =
i

* then we do weighted sum of values proportional to their relevance |, &

y
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 Use q;, k;, v; to refers to row t of the K matrix

* Pre-softmax “attention score”
1
( = gkl
. * Weighed average via softmax

hy = z softmax(St,:)ivi = softmax(S,.)V

i

. QK"
SelfAttention(Q, K, V) = softmax 1172 V

* Intuition: s; computes the relevance of k; to the query g,

12

* then we do weighted sum of values proportional to their relevance A
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* Have multiple “attention heads” QU), KU), VU) denotes j-th attention head

g * Apply self-attention in each attention head

. QK"
SelfAttention(Q, K, V) = softmax V

dl/2

* Concatenate all output heads together as output

* Each head can correspond to different kind of information.

* Sometimes we can share the heads: GQA(group query attention) all heads share K,
V but have different Q

13
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e Obtain Q, K, V from previous layer’s hidden state X by linear projection

0= v,
K = XWy
V=XWy
e Can compute all heads and Q, K, V together
() () [ Uy
then

* split/reshape out into individual Q, K, V with

A

\ Linear projection

multiple heads
X |
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output
e A typical transformer block f
normalize
Z = SelfAttention(X Wy, XW,, XWy,) Feed forward
Z = LayerNorm(X + Z) normalize
H = LayerNorm(ReLU(ZW, )W, + Z) ] Self-attention
i matmul i
sof&nax
| I
e (multi-head) self-attention, followed by a | matmu
linear layer and ReLU and some additional Q' K' ;
residual connections and normalization e e r
input
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* In the matrix form, we are computing weighted average over all inputs

h * In auto regressive models, usually it is good to
93 - maintain casual relation, and only attend to
\ some of the inputs (e.g. skip the red dashed edge

TN on the left). We can add “attention mask”

\
\
\

. K’
MaskedSelfAttention(Q, K, V) = softmax (31/2 — M) /4

_ s>t .
Mij_{()’jgi 0

* Only attend to previous inputs. Depending on input structure and model, attention mask can change.

* We can also simply skip the computation that are masked out if there is a special implementation to

do so . \
‘
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* What are the advantages of transformers versus RNNs
 What are the disadvantages

 What are other possible ways to apply attention mask

17
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 Use q;, k;, v; to refers to row t of the K matrix

e Conceptually, we compute the output in
1 the following two steps:

* Pre-softmax “attention score”

1 kT
\/dq '

* Weighed average via softmax

v 1% v 1% . exp(s;) v;
= oty < L0
i

Zj exp(sj)

e
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1
* Pre-softmax “attention score” s; = — qk;'r

Vd
* Define the following “Attention weight” for an index set |
s(1) = log( ) exp(sy))
i€l
* Let us generalize the value vector v for index set |

2ier €xp(sy) v;
exp(s(1))

v(l) = 2 softmax(s);v; =

LEI

* Reference: flashinfer.ai 20
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Generalizing Attention Score and Value Vector ( A i
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* Pre-softmax “attention score” . _ i gk”
l
Vd '
Qiier €Xp(s)v;
s(I) =lo z exp(s;)),v(l =Z softmax(s);v; =
) 8( i€l p(si)),v(l) i€l (5) exp(s(l))

 When index set I ={i},s({i}) =s; ,v{i}) = v;

* When indexset [ = {1,2...t}, v(I)is the final output of the attention

21
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Recursive Attention g LEOE SR
Diic1 €XP(S)V;
s(l) =lo exp(s;)),v(l) = softmax(s);v; =
() g(E - p(si)),v(l) E - (5)iv; exp(s(D))

* For any partition {Ij} of I such that] = j= 111 , the following relation holds
+ s(UI ) =log (3 exp (s(1)) ), v(UIL, 1) =X softmax([s(1,), s(I,) ...]); v()
* We can use the same rule to recursively combine the vector and

“attention score” of any subsets of indices

* When we obtain the value vector of all indices, that becomes the
attention output

22
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Discussions: Recursive Attention f L i el 8 %
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) - _ ier exp(sv
s(l) = log(zia exp(s;)),v(l) = ziel softmax(s);v; = exp(s(]))

* For any partition {Ij} of I such that] = J 1 I; , the following relation holds

- s(U_, ) log( exp( (L ))) v(Uj=1 ) =X ; softmax([s(1y), s(I3) ... D; v(I})

e Attention computation is communicative and associative and can be

done in a divide-and-conquer fashion. An important property for a lot
of system optimizations

* Discussion: what can we do with this property?

23
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