
System for Artificial Intelligence

Introduction to LLMs and Optimizations

Siyuan Feng

Shanghai Innovation Institute

O U T L I N E
01

02

03

2

Sequence Prediction

Transformers and Self-Attention

Recursive Attention

3

01
Sequence Prediction

Sequence Prediction

• Take a set of input sequence, predict the output sequence

4

model

𝑥1 𝑥2 𝑥3 𝑥4

𝑦1 𝑦2 𝑦3 𝑦4

…

• Predict each output based on history: 𝑦𝑡 = 𝑓𝜃 𝑥1:𝑡

• There are many ways to build up the predictive model

“Direct Prediction”

• One approach is we can do “direct prediction”

• Challenge: different size inputs.

5

Direct model

𝑥1 𝑥2 𝑥3 𝑥4

𝑦4

…

RNN Approach

• Try to maintain a "latent state" that is derived from history.

• Challenge: The information is carried only through ℎ𝑡

6

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4

𝑦1 𝑦2 𝑦3 𝑦4

𝑥1 𝑥2 𝑥3 𝑥4

…

Direct model

𝑥1 𝑥2 𝑥3 𝑥4

𝑦4

7

02
Transformers and
Self-Attention

"Attention" Mechanism

• Generally refers to the approach that weighted combine individual states

8

𝑥1 𝑥2 𝑥3 𝑥4

ℎ1 ℎ2 ℎ3 ℎ4Attention Output

Hidden states from
previous layer

ℎ𝑡 = ෍
𝑖=1

𝑡

𝑠𝑖𝑥𝑖

Direct model

• Intuitively 𝑠𝑖 is “attention score” that computes how relevant the position 𝑖’s

input is to this current hidden output There are different methods to decide how

attention score is being computed

Self-Attention Operation

• Self attention refers to a particular form of attention mechanism.

Given three inputs (“queries”, “keys”, “values”)

• Define the self-attention as:

9

𝑄, 𝐾, 𝑉 ∈ ℝ𝑇×𝑑

SelfAttention(𝑄, 𝐾, 𝑉) = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

A Closer Look at Self-Attention

• Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

10

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞𝑡
ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

• Ask the following question:

• How to compute the output ℎ𝑡, based

on 𝑞𝑡, 𝐾, 𝑉 one timestep 𝑡

• To keep presentation simple, we will

drop suffix 𝑡 and just use 𝑞 to refer to 𝑞𝑡

in next few slide

A Closer Look at Self-Attention

• Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

11

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞
• Conceptually, we compute the output in

the following two steps:

• Pre-softmax “attention score”

• Weighed average via softmax

• Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞,

• then we do weighted sum of values proportional to their relevance

𝑠𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

ℎ = ෍
𝑖

softmax 𝑠 𝑖𝑣𝑖 =
σ𝑖 exp s𝑖 𝑣𝑖

σ𝑗 exp(𝑠𝑗)

• Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

12

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞

• Weighed average via softmax

• Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞,

• then we do weighted sum of values proportional to their relevance

𝑠𝑡𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

ℎ𝑡 = ෍

𝑖

softmax 𝑆𝑡,: 𝑖
𝑣𝑖 = softmax 𝑆𝑡,: 𝑉

Comparing the Matrix Form and the Decomposed Form

• Pre-softmax “attention score”

SelfAttention(𝑄, 𝐾, 𝑉) = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

Multi-Head Attention

• Have multiple “attention heads” 𝑄(𝑗), 𝐾(𝑗), 𝑉(𝑗) denotes 𝑗-th attention head

13

• Apply self-attention in each attention head

• Concatenate all output heads together as output

• Each head can correspond to different kind of information.

• Sometimes we can share the heads: GQA(group query attention) all heads share K,

V but have different Q

SelfAttention(𝑄, 𝐾, 𝑉) = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

𝑄(𝑗), 𝐾(𝑗), 𝑉(𝑗)

𝑞(𝑗)
𝑞(𝑗)ℎ1

(𝑗)
ℎ2

(𝑗)
ℎ3

(𝑗)
ℎ4

(𝑗)

𝑘1
(𝑗)

𝑘2
(𝑗)

𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗)

𝑣2
(𝑗)

𝑣3
(𝑗)

𝑣4
(𝑗)

How to get Q K V?

• Obtain 𝑄, 𝐾, 𝑉 from previous layer’s hidden state 𝑋 by linear projection

14

• Can compute all heads and 𝑄, 𝐾, 𝑉 together

then

• split/reshape out into individual 𝑄, 𝐾, 𝑉 with

multiple heads

𝑄(𝑗), 𝐾(𝑗), 𝑉(𝑗)

𝑞(𝑗)
𝑄 = 𝑋𝑊𝑄

𝐾 = 𝑋𝑊𝐾

𝑉 = 𝑋𝑊𝑉

𝑋

Linear projection

𝑞(𝑗)ℎ1
(𝑗)

ℎ2
(𝑗)

ℎ3
(𝑗)

ℎ4
(𝑗)

𝑘1
(𝑗)

𝑘2
(𝑗)

𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗)

𝑣2
(𝑗)

𝑣3
(𝑗)

𝑣4
(𝑗)

Transformer Block

• A typical transformer block

• (multi-head) self-attention, followed by a

linear layer and ReLU and some additional

residual connections and normalization

15

𝑍 = SelfAttention(𝑋𝑊𝐾 , 𝑋𝑊𝑄 , 𝑋𝑊𝑉)

𝑍 = LayerNorm(𝑋 + 𝑍)

𝐻 = LayerNorm(ReLU 𝑍𝑊1 𝑊2 + 𝑍)

output

normalize

Feed forward

normalize

matmul

softmax

matmul

𝑄 𝐾 𝑉

input

Self-attention

Masked Self-Attention

• In the matrix form, we are computing weighted average over all inputs

16

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞3

• In auto regressive models, usually it is good to
maintain casual relation, and only attend to
some of the inputs (e.g. skip the red dashed edge
on the left). We can add “attention mask”

MaskedSelfAttention(𝑄, 𝐾, 𝑉) = softmax
𝑄𝐾𝑇

𝑑1/2
− 𝑀 𝑉

𝑀𝑖𝑗 = ቊ
∞, j > 𝑖
0, 𝑗 ≤ 𝑖 0

∞

• Only attend to previous inputs. Depending on input structure and model, attention mask can change.

• We can also simply skip the computation that are masked out if there is a special implementation to

do so

Discussions

• What are the advantages of transformers versus RNNs

• What are the disadvantages

• What are other possible ways to apply attention mask

17

18

03
Recursive Attention

Self-Attention Recap

• Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

19

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞
• Conceptually, we compute the output in

the following two steps:

• Pre-softmax “attention score”

• Weighed average via softmax

𝑠𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

ℎ = ෍
𝑖

softmax 𝑠 𝑖𝑣𝑖 =
σ𝑖 exp s𝑖 𝑣𝑖

σ𝑗 exp(𝑠𝑗)

Generalizing Attention Score and Value Vector

• Pre-softmax “attention score”

• Define the following “Attention weight” for an index set 𝐼

• Let us generalize the value vector v for index set 𝐼

20

𝑠𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

𝑠(𝐼) = log(෍
𝑖∈𝐼

exp(𝑠𝑖))

v(𝐼) = ෍

𝑖∈𝐼

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠)𝑖𝑣𝑖 =
σ𝑖∈𝐼 exp 𝑠𝑖 𝑣𝑖

exp(𝑠 𝐼)

• Reference: flashinfer.ai

Generalizing Attention Score and Value Vector

• Pre-softmax “attention score”

• When index set

• When index set is the final output of the attention

21

𝑠𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

𝑠(𝐼) = log(෍
𝑖∈𝐼

exp(𝑠𝑖)) , v(𝐼) = ෍
𝑖∈𝐼

softmax(𝑠)𝑖𝑣𝑖 =
σ𝑖∈𝐼 exp(𝑠𝑖)𝑣𝑖

exp(𝑠(𝐼))

𝐼 = 𝑖 , s 𝑖 = 𝑠𝑖 ,v 𝑖 = 𝑣𝑖

𝐼 = 1,2 … 𝑡 , v 𝐼

Recursive Attention

• We can use the same rule to recursively combine the vector and

“attention score” of any subsets of indices

• When we obtain the value vector of all indices, that becomes the

attention output

22

𝑠(𝐼) = log(෍
𝑖∈𝐼

exp(𝑠𝑖)) , v(𝐼) = ෍
𝑖∈𝐼

softmax(𝑠)𝑖𝑣𝑖 =
σ𝑖∈𝐼 exp(𝑠𝑖)𝑣𝑖

exp(𝑠(𝐼))

• For any partition 𝐼𝑗 of 𝐼 such that 𝐼 = 𝑗=1ڂ
𝑛 𝐼𝑗 , the following relation holds

• s(ڂ𝑗=1
𝑛 𝐼𝑗) =log σ𝑗 exp 𝑠 𝐼𝑗 , v(ڂ𝑗=1

𝑛 𝐼𝑗) =σ𝑗 softmax 𝑠 𝐼1 , 𝑠 𝐼2 … 𝑗 𝑣(𝐼𝑗)

Discussions: Recursive Attention

• Attention computation is communicative and associative and can be

done in a divide-and-conquer fashion. An important property for a lot
of system optimizations

• Discussion: what can we do with this property?

23

𝑠(𝐼) = log(෍
𝑖∈𝐼

exp(𝑠𝑖)) , v(𝐼) = ෍
𝑖∈𝐼

softmax(𝑠)𝑖𝑣𝑖 =
σ𝑖∈𝐼 exp(𝑠𝑖)𝑣𝑖

exp(𝑠(𝐼))

• For any partition 𝐼𝑗 of 𝐼 such that 𝐼 = 𝑗=1ڂ
𝑛 𝐼𝑗 , the following relation holds

• s(ڂ𝑗=1
𝑛 𝐼𝑗) =log σ𝑗 exp 𝑠 𝐼𝑗 , v(ڂ𝑗=1

𝑛 𝐼𝑗) =σ𝑗 softmax 𝑠 𝐼1 , 𝑠 𝐼2 … 𝑗 𝑣(𝐼𝑗)

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

24

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1: Introduction to LLMs and Optimizations
	Slide 2
	Slide 3
	Slide 4: Sequence Prediction
	Slide 5: “Direct Prediction”
	Slide 6: RNN Approach
	Slide 7
	Slide 8: "Attention" Mechanism
	Slide 9: Self-Attention Operation
	Slide 10: A Closer Look at Self-Attention
	Slide 11: A Closer Look at Self-Attention
	Slide 12: Comparing the Matrix Form and the Decomposed Form
	Slide 13: Multi-Head Attention
	Slide 14: How to get Q K V?
	Slide 15: Transformer Block
	Slide 16: Masked Self-Attention
	Slide 17: Discussions
	Slide 18
	Slide 19: Self-Attention Recap
	Slide 20: Generalizing Attention Score and Value Vector
	Slide 21: Generalizing Attention Score and Value Vector
	Slide 22: Recursive Attention
	Slide 23: Discussions: Recursive Attention
	Slide 24: Acknowledgement
	Slide 25: Thanks

