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Challenges:

* Large intermediate results

* Repeated reads/writes from GPU device memory

e Cannot scale to long sequences due to O(N”2) intermediate results
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FlashAttention f Lol 8 R
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A = softmax(QKT)

* Key idea: compute attention by blocks to reduce EEEEEEEE

lobal memory access HEREEEEEN
5 y EEEEEEEE

* Two main Techniques:

1. Tiling: restructure algorithm to load query/key/value block by block
from global to shared memory

2. Recomputation: don’t store attention matrix from forward,
recompute it in backward
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iling: Decompose Large Softmax into smaller ones Q‘ b o) s s
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by Scallng Quter Loop .
_ K:dxN [HNNNNEEN
1. Load inputs by blocks from global to Copy lockto SFA
Q:N xd Outerloop =~ y:Nxd
shared memory T S REELECECECE m
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2. On chip, compute attention output wrt §l S W M = 5
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3. Update output in device memory by R
Sca I i ng Output to HBM

sm(QK")V:N x d

Inner Loop

FlashAttention

softmax([44,4,]) = |a X softmax (4,),B X softmax(4,)]

softmax([A44, A5]) [51] = a X softmax(4,) V; + B X softmax(4,)V,
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Recomputation: Backward Pass
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Outer Loop .
* By storing softmax normalization factors PP [ [ [ [ [ [

Copy Block to SRAM
from forward (size N), recompute attention

Q:N xd Outerloop =~ y:Nxd
. . o F o m g m ey —m—m—mm—m—m - — — — |
in the backward from inputs in shared = x : }
e ' O
memaor o/l 3 ' copy [l (S
y § “ onSRA?\LIOCk : § . 3
5 [ e 13 Mg
. c N |5 W s
Standard FlashAttention - |- 2 M
{8 I
GFLOPs 66.6 75.2 Output to HBM
Global mem access  40.3 GB 4.4 GB sm(QKT)V:N x d
Inner Loop
Runtime 41.7 ms 7.3 ms

FlashAttention

Speed up backward pass with increased FLOPs
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FlashAttention: Threadblock-level Parallelism % L& & & = B
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Outer Loop

How to partition FlashAttention across :dxy EEEEEEEE
thread blocks? opy Blecktomi

Q:N x d L _?ft_eito_O_P___; V:Nxd

(An A100 has 108 SMMs -> 108 thread e -
@ 5 o |2
blocks) S| s S |
o | copv | 1] 2 M5
s|m e WS
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* Step 1. assign different heads to v TR —— v

QOutput to HBM

different thread blocks (16-64 heads) sm(QKTYWV: N X d

Inner Loop

FlashAttention
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Outer Loop .
How to partition FlashAttention across thread T:dx v HEEEEEEE
b I O Cks ? Co(:y Block to SRAM
Q:Nxd _ __ft_eitfio_p___; V:NXxd
(An A100 has 108 SMMs -> 108 thread blocks) l : B
|  cory M |
8 .—b onSRA?\LIOCk : =1 . Q
E B copy ! Eé B g
e Step 1: assign different heads to different = = g = S

thread blocks (16-64 heads)

Output to HBM

- . . sm(QK")V:N x d
e Step 2: assign different queries to nner Loop

different thread blocks (Why?) FlashAttention

Thread blocks cannot communicate; cannot perform softmax when
partitioning keys/values




' FlashAttention: Threadblock-level Parallelism

Keys/Values

Queries

Forward pass

Do we need to handle workload imbalance?

Block 1
Block 2
Block 3
Block 4
Block 5

R
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No. GPU scheduler automatically loads the next block once the

current one com pletes.
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' FlashAttention: Warp-Level Parallelism LB 88 R
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* How to partition FlashAttention across warps within a thread block?

K'T HT
______ weroz | W3 | waro | Warp 1-4
Warp1l | Warp2 Warp 3 : Warp 4
' Vv
'+ I e e e ol Tp— Q 4
1 1
Warp 1-4 Warpl | - Warp1
|
Warp 2 . Warp 2 : Warp 1-4
______ S I
Warp 3 [ ]
______ . Warp3 :
: ______
Warp 4 | |
______ . Warp4 |
Accessed by all warps R !

Accessed by all warps

_____

: Split across different warps

_____

: Split across different warps

_____

(a) FLASHATTENTION (b) FLASHATTENTION-2

@Splitting across  K/V  requires Splitting across Q avoids @

communication to add results communications A
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FlashAttention: 2-4x speedup, 10-20x memory reductiong® L i8 & & % k

Speed (TFLOPs/s)
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Attention forward + backward speed (A100 80GB SXM4)

Pytorch

xformers

512

FlashAttention

FlashAttention Triton
FlashAttention-2

FlashAttention Memory Reduction

189 20 7 mmm Dropout + Masking

182

15 +
133
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Memory Reduction (X times less)

128 256 512 1024 2048 4096
1k 2k 4k 8k 16k Sequence Length
Sequence length

* Memory linear in sequence length
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LLM Inference
(Auto-regressive Decoding)
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Input Prompt: [Accelerating LLM requires machine] - > |earning pr> systems e optimizations
Iter O Iter 1 Iter 2 Iter 3
Layler 1 Layler 1 Layler 1 Layler 1
Layler 2 Layler 2 Layler 2 Layler 2
Layler 3 Layler 3 Layler 3 Layler 3
| | | |
Outputs: learning systems optimizations [EOS]
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Attention Score

learning | 1 | O 7| 1| 2
()

g 2 ¢ 2 2

< = 5 5 €

T & ©

g g w

Decoding Phase
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Generative LLM Inference: Autoregressive Decoding

* Pre-filling phase (0-th iteration):

* Process all input tokens at once

* Decoding phase (all other iterations):
* Process a single token generated from previous iteration

e Use attention keys & values of all previous tokens

e Key-value cache:

* Save attention keys and values for the following iterations to avoid
recomputation

19
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Can We Apply FlashAttention to LLM Inference? g* L i3 8 8 = b
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Attention Comp.

Attention Comp.

Acc.
LLM learning
requires <tt§ % ,é % %"
machine ;‘; é E
N
= qg)_ B
s €
* Pre-filling phase: * Decoding phase:

* Yes, compute different queries using ¢ No, there is a single query in the
different thread blocks/warps decoding phase
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' FlashAttention Processes K/V Sequentially £ B8l 8 % [k
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Values

Keys

Queries .

Output

Inefficient for requests with long context (many keys/values)

4N



' FlashAttention Processes K/V Sequentially Lo ER
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1. Split keys/values into small chunks
2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits
Values

Keys

Queries | S

Output

Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5

Key insight: attention is associative and commutative A



' Flash-Decoding is up to 8x faster than prior work LB s R
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CodelLlama-34b end-to-end decoding speed [bs=1, MP=4]
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—— flash-attention
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—— flash-decoding
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KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine]
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[Accelerating LLM requires machine]
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KV Cache Dynamically Grows and Shrinks
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KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine] > learning
Iter O Iter 1
Attention Matrix Layer 1 Layer 1
Layer 2 Layer 2
8 S 0 Q o v ]
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> systems > optimizations
| Iter 2 Iter 3
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Static KV Cache Management Wastes Memory * L3 & & 5 b
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0 A’s max length
\ A )
Y
3 KV Cache slots for Pre-allocated sIots for A’s output Externa/frag. Request B

request A’s prompt (Internal frag.)

* Pre-allocates contiguous space of memory to the request’s maximum
length

* Memory fragmentation

* Internal fragmentation due to unknown output length

28

* External fragmentation due to non-uniform per-request max lengths a



' Significant Memory Waste in KV Cache L8 el 8] 3k
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* Only 20-40% of KV cache is utilized to store actual token states

M KV Cache ™" Internal frag. M External frag. & Others
100
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40 -

20 -

KV Cache space usage (%)

Orca Orca Orca vilm
(Max) (Pow2) (Oracle)
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PagedAttention

y_

Crees=zp
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e Application-level memory paging and virtualization for KV cache

Memory management in OS

Page O

Process Page 1
A Page 2
Page 3

Page 4

Physical Memory

Process
B

Request
A

PagedAttention

KV Block O
KV Block 1 e
KV Block 2 B

KV Block 3
KV Block 4

KV Cache

30
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Paging KV Cache Space into KV Blocks* g L& e &R
* KV block is a fixed-size contiguous KV blocks
chunk of memory that stores KV block 0
states from left to right block 1
block 2
block 3 W“h?
block 4 | arificial | '™e1E€ s the
block 5 SW
block 6
block 7
\ v )

Block size =4

%k “" ) . 1
The term “block” is overloaded in PagedAttention . : \
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Virtualizing KV Cache

Physical KV blocks

Request
A block 0
Prompt: “Alan Turing is a computer scientist” block 1| computer | scientist
. block 2
Logical KV blocks
Block table block 3
bIOCk O Alan Turing is a Physical block # Filled
\. number bIOCk 4
block 1 computer scientist / 4
\ . 5 block 5
block 2 - - block 6
bIOCk 3 _ _ block 7 Alan Turing is a
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Attention with Virtualized KV Cache

¥

1. Fetch non-contiguous KV blocks using the block table

2. Apply attention on the fly

Block table

Physical block
number

# Filled

4

4

5
Query for < 0
2

2

Key insight: attention is associative and commutative

Block 1

Block 2

Block O

KV Cache
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Memory Management with PagedAttention g L B8 8 F Ik
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Request Physical KV blocks

A block 0

Prompt: “Alan Turing is a computer scientist” blOCk 1| computer | scientist

Completion: “and block 2
Logical KV blocks
Block tabl
R block 3
bIOCk O Alan Turing is a Physical block # Filled
number
N block 4
block 1 computer scientist / 4
. ) ) block 5
block 2
- - block 6
bIOCk 3 - _ bIOCk 7 Alan Turing is a
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Memory Management with PagedAttention g L B8 8 F Ik
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Request Physical KV blocks

A block 0

Prompt: “Alan Turing is a computer scientist” blOCk 1| computer | scientist

Completion: “and” block 2
Logical KV blocks Block table
block 3
bIOCk O Alan Turing is a Physical block # Filled
number
N block 4
block 1 computer scientist and / 4
. ) ) block 5
block 2
- - block 6
bIOCk 3 - _ bIOCk 7 Alan Turing is a
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Memory Management with PagedAttention g L B8 8 F Ik
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Request Physical KV blocks

A block 0

Prompt: “Alan Turing is a computer scientist” block 1 | computer | scientist and

Completion: “and” block 2
Logical KV blocks Block table
block 3
bIOCk O Alan Turing is a Physical block # Filled
number
N block 4
block 1 computer scientist and / 4
. ) Z block 5
block 2
- - block 6
bIOCk 3 - _ bIOCk 7 Alan Turing is a
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Memory Management with PagedAttention g L B8 8 F Ik
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Physical KV blocks

Request
A block 0
S mathem
Prompt: “Alan Turing is a computer scientist” block 1 | computer | scientist and atician
Completion: “and mathematician” block 2
Logical KV blocks Block table block 3
bIOCk O Alan Turing is a \. Physical block # Filled
number
block 4
block 1 computer scientist and ma.them / 4
atician bl k 5
1 4 ocC
block 2
- - block 6
bIOCk 3 _ _ bIOCk 7 Alan Turing is a
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Memory Management with PagedAttention g L B8 8 F Ik

Shanghai Innovation Institute

Physical KV blocks

Request
A block O
S mathem
Prompt: “Alan Turing is a computer scientist” block 1| computer | scienist and atician
Completion: “and mathematician renowned” block 2
Logical KV blocks Block table block 3
block 0 i i - |
Alan furing ; ° o mber || #Filled Allocated on demand
block 4
block 1 computer scientist and r::itcf;::\ / 4 ( |
1 4 blOCk 5 renowned I
block 2 | renowned _ A e e e e
” 5 1 block 6
bIOCk 3 _ _ bIOCk 7 Alan Turing is a
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' Memory Efficiency of PagedAttention

Minimal internal fragmentation

e Only happens at the last block of a sequence

e # wasted tokens / seq < block size

No external fragmentation

R
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M KV Cache @ Internal frag. M External frag. & Others
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Recap: Techniques for Optimizing Attention f Lt s 8l 8 =
* FlashAttention: tiling to reduce GPU global memory access

* Auto-regressive Decoding: pre-filling and decoding phases, KV cache

* FlashDecoding: improving attention’s parallelism by splitting
keys/values

* PagedAttention: paging and virtualization to reduce KV cache’s
memory requirement
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