
System for Artificial Intelligence

Attention Optimizations

Siyuan Feng

Shanghai Innovation Institute

Attention: O = Softmax(QKT) V

Challenges:

• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results

2

× ×

Q: N × d K: N × d A = QKT: N × N A = mask(A) A = softmax A : N × N V: N × d O= AV:N×d

O U T L I N E
01

02

3

LLM Training

LLM Inference

4

01
LLM Training

Revisit: GPU Memory Hierarchy

5

Per-block shared memory

(readable/writable by all

threads in a block)

Grid 0

Block(0,0) Block(1,0) Block(2,0)

Block(0,1) Block(1,1) Block(2,1)

Device global memory

(readable/writable by all

threads)

19 TB/s (20 MB)

1.5 TB/s (80 GB)

FlashAttention

• Key idea: compute attention by blocks to reduce

global memory access

6

• Two main Techniques:

1. Tiling: restructure algorithm to load query/key/value block by block

from global to shared memory

2. Recomputation: don’t store attention matrix from forward,

recompute it in backward

𝐴 = softmax 𝑄𝐾𝑇

Tiling: Decompose Large Softmax into smaller ones
by Scaling

1. Load inputs by blocks from global to
shared memory

2. On chip, compute attention output wrt
the block

3. Update output in device memory by
scaling

7

softmax 𝐴1, 𝐴2 = 𝛼 × softmax 𝐴1 , 𝛽 × softmax(𝐴2)

softmax 𝐴1, 𝐴2
𝑉1
𝑉2

= 𝛼 × softmax 𝐴1 𝑉1 + 𝛽 × softmax(𝐴2)𝑉2

KT: 𝑑 × 𝑁

Outer Loop

Outer Loop

O
u

ter Lo
o

p

𝑄:𝑁 × 𝑑 𝑉:𝑁 × 𝑑

sm 𝑄𝐾𝑇 𝑉:𝑁 × 𝑑

In
n

er
 L

o
o

p

In
ner Lo

o
p

Compute Block
on SRAM

Output to HBM

Inner Loop

Copy Block to SRAM

Copy

CopyQ
K
T
:N

×
N

FlashAttention

Tiling

8

Recomputation: Backward Pass

9

FlashAttention

• By storing softmax normalization factors
from forward (size N), recompute attention
in the backward from inputs in shared
memory

Speed up backward pass with increased FLOPs

Attention Standard FlashAttention

GFLOPs 66.6 75.2

Global mem access 40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms

FlashAttention: Threadblock-level Parallelism

10

FlashAttention

How to partition FlashAttention across

thread blocks?

(An A100 has 108 SMMs -> 108 thread

blocks)

• Step 1: assign different heads to

different thread blocks (16-64 heads)

FlashAttention: Threadblock-level Parallelism

11

How to partition FlashAttention across thread

blocks?

(An A100 has 108 SMMs -> 108 thread blocks)

• Step 1: assign different heads to different

thread blocks (16-64 heads)

• Step 2: assign different queries to

different thread blocks (Why?)

Thread blocks cannot communicate; cannot perform softmax when

partitioning keys/values

FlashAttention

FlashAttention: Threadblock-level Parallelism

12

No. GPU scheduler automatically loads the next block once the

current one completes.

Do we need to handle workload imbalance?

Block 1

Block 2

Block 3

Block 4

Block 5

Queries

Keys/Values

Forward pass

FlashAttention: Warp-Level Parallelism

13

Splitting across Q avoids

communications

Splitting across K/V requires

communication to add results

• How to partition FlashAttention across warps within a thread block?

FlashAttention: 2-4x speedup, 10-20x memory reduction

14

• Memory linear in sequence length

15

02
LLM Inference
(Auto-regressive Decoding)

Generative LLM Inference: Autoregressive Decoding

Layer 1

Iter 0

Layer 2

Layer 3

learning

Layer 1

Iter 1

Layer 2

Layer 3

Layer 1

Iter 2

Layer 2

Layer 3

Layer 1

Iter 3

Layer 2

Layer 3

systems optimizations [EOS]

[Accelerating LLM requires machine] learning systems optimizations Input Prompt:

Outputs:

Generative LLM Inference: Autoregressive Decoding

Layer 1

Iter 0

Layer 2

Layer 3

learning

Layer 1

Iter 1

Layer 2

Layer 3

Layer 1

Iter 2

Layer 2

Layer 3

Layer 1

Iter 3

Layer 2

Layer 3

systems optimizations [EOS]

[Accelerating LLM requires machine] learning systems optimizations Input Prompt:

Outputs:

Attention Score

1

2 0

5 1 3

2 0 1 1

Acc.

LLM

requires

machine

A
cc

.

LL
M

re
qu

ir
es

m
ac

h
in

e

Pre-filling Phase

Generative LLM Inference: Autoregressive Decoding

Layer 1

Iter 0

Layer 2

Layer 3

learning

Layer 1

Iter 1

Layer 2

Layer 3

Layer 1

Iter 2

Layer 2

Layer 3

Layer 1

Iter 3

Layer 2

Layer 3

systems optimizations [EOS]

[Accelerating LLM requires machine] learning systems optimizations Input Prompt:

Outputs:

Attention Score

1

2 0

5 1 3

2 0 1 1

1 0 7 1 2

A
cc

.

LL
M

re
qu

ir
es

m
ac

h
in

e

le
ar

n
in

g

Decoding Phase

learning

No need to
recompute

Generative LLM Inference: Autoregressive Decoding

• Pre-filling phase (0-th iteration):

• Process all input tokens at once

• Decoding phase (all other iterations):

• Process a single token generated from previous iteration

• Use attention keys & values of all previous tokens

• Key-value cache:

• Save attention keys and values for the following iterations to avoid

recomputation

19

Can We Apply FlashAttention to LLM Inference?

• Pre-filling phase:

• Yes, compute different queries using

different thread blocks/warps

20

Attention Comp.

Acc.

LLM

requires

machine

A
cc

.

LL
M

re
qu

ir
es

m
ac

h
in

e

Attention Comp.

learning

A
cc

.

LL
M

re
qu

ir
es

m
ac

h
in

e

le
ar

n
in

g

• Decoding phase:

• No, there is a single query in the

decoding phase

FlashAttention Processes K/V Sequentially

21

Inefficient for requests with long context (many keys/values)

FlashAttention Processes K/V Sequentially

22
Key insight: attention is associative and commutative

1. Split keys/values into small chunks

2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits

Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5

Flash-Decoding is up to 8x faster than prior work

23

KV Cache Dynamically Grows and Shrinks

24

Attention Matrix

1

2 0

5 1 3

2 0 1 1

Acc.

LLM

requires

machine

A
cc

.

LL
M

re
qu

ir
es

m
ac

h
in

e
Layer 1

Iter 0

Layer 2

Layer 3

learning

[Accelerating LLM requires machine]

Outputs:

KV Cache

A
cc

el
er

at
in

g

LL
M

re
q

ui
re

s

m
ac

h
in

e

KV Cache Dynamically Grows and Shrinks

25

Layer 1

Iter 0

Layer 2

Layer 3

learning

[Accelerating LLM requires machine]

Outputs:

KV Cache

A
cc

el
er

at
in

g

LL
M

re
q

ui
re

s

m
ac

h
in

e

le
ar

n
in

g

Attention Matrix

learning

A
cc

.

LL
M

re
qu

ir
es

m
ac

h
in

e

le
ar

n
in

g

Layer 1

Iter 1

Layer 2

Layer 3

systems

learning

KV Cache Dynamically Grows and Shrinks

26

Layer 1

Iter 0

Layer 2

Layer 3

learning

[Accelerating LLM requires machine]

Outputs:

KV Cache

A
cc

el
er

at
in

g

LL
M

re
q

ui
re

s

m
ac

h
in

e

le
ar

n
in

g

sy
st

em
s

learning

A
cc

.

LL
M

re
qu

ir
es

m
ac

h
in

e

le
ar

n
in

g

Layer 1

Iter 1

Layer 2

Layer 3

systems

learning

sy
st

em
s

Layer 1

Iter 2

Layer 2

Layer 3

optimizations

systems

Attention Matrix

KV Cache Dynamically Grows and Shrinks

27

Layer 1

Iter 0

Layer 2

Layer 3

learning

[Accelerating LLM requires machine]

Outputs:

KV Cache

A
cc

el
er

at
in

g

LL
M

re
q

ui
re

s

m
ac

h
in

e

le
ar

n
in

g

sy
st

em
s

learning

A
cc

.

LL
M

re
qu

ir
es

m
ac

h
in

e

le
ar

n
in

g

Layer 1

Iter 1

Layer 2

Layer 3

systems

learning

sy
st

em
s

Layer 1

Iter 2

Layer 2

Layer 3

optimizations

systems

o
p

t.

Attention Matrix

o
pt

im
iz

at
io

n
s

Layer 1

Iter 3

Layer 2

Layer 3

[EOS]

optimizations

Static KV Cache Management Wastes Memory

28

• Pre-allocates contiguous space of memory to the request’s maximum

length

• Memory fragmentation

• Internal fragmentation due to unknown output length

• External fragmentation due to non-uniform per-request max lengths

Artificial
Intellige

nce
is <resv> <resv> … <resv> <resv> … … Alan Turing …

3 KV Cache slots for
request A’s prompt

Pre-allocated slots for A’s output

(Internal frag.)
External frag. Request B

0 3 A’s max length

Significant Memory Waste in KV Cache

29

• Only 20-40% of KV cache is utilized to store actual token states

PagedAttention

30

• Application-level memory paging and virtualization for KV cache

Memory management in OS PagedAttention

Page 0

Page 1

Page 2

Page 3

Page 4

Process
A

Process
B

Physical Memory

KV Block 0

KV Block 1

KV Block 2

KV Block 3

KV Block 4

Request
A

Request
B

KV Cache

Paging KV Cache Space into KV Blocks*

31

• KV block is a fixed-size contiguous

chunk of memory that stores KV

states from left to right

Artificial
Intellige

nce
is the

KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

KV Cache

Space

* The term “block” is overloaded in PagedAttention

Virtualizing KV Cache

32

computer scientist

Alan Turing is a

Physical KV blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

Alan Turing is a

computer scientist

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 0

block 1

block 2

block 3

Logical KV blocks

Physical block
number

Filled

7 4

1 2

- -

- -

Block table

Attention with Virtualized KV Cache

33

computer scientist and
mathe-

matician

renowed for

Alan Turing is a

KV Cache

Block 0

Block 1

Block 2

Physical block
number

Filled

5 4

0 4

2 2

- -

Block table

1. Fetch non-contiguous KV blocks using the block table

2. Apply attention on the fly

forQuery

Key insight: attention is associative and commutative

Memory Management with PagedAttention

34

computer scientist

Alan Turing is a

Physical KV blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

Alan Turing is a

computer scientist

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 0

block 1

block 2

block 3

Physical block
number

Filled

7 4

1 2

- -

- -

Block table

Completion: “and”

Logical KV blocks

Memory Management with PagedAttention

35

computer scientist

Alan Turing is a

Physical KV blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

Alan Turing is a

computer scientist and

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 0

block 1

block 2

block 3

Logical KV blocks

Physical block
number

Filled

7 4

1 2

- -

- -

Block table

Completion: “and”

Memory Management with PagedAttention

36

computer scientist and

Alan Turing is a

Physical KV blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

Alan Turing is a

computer scientist and

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 0

block 1

block 2

block 3

Physical block
number

Filled

7 4

1 3

- -

- -

Block table

Completion: “and”

Logical KV blocks

Memory Management with PagedAttention

37

computer scientist and
mathem
atician

Alan Turing is a

Physical KV blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

Alan Turing is a

computer scientist and
mathem
atician

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 0

block 1

block 2

block 3

Physical block
number

Filled

7 4

1 4

- -

- -

Block table

Completion: “and mathematician”

Logical KV blocks

Memory Management with PagedAttention

38

computer scientist and
mathem
atician

renowned

Alan Turing is a

Physical KV blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

Alan Turing is a

computer scientist and
mathem
atician

renowned

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 0

block 1

block 2

block 3

Physical block
number

Filled

7 4

1 4

5 1

- -

Block table

Completion: “and mathematician renowned”

Logical KV blocks

Allocated on demand

Memory Efficiency of PagedAttention

39

Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

No external fragmentation

Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal
fragmentation

Recap: Techniques for Optimizing Attention

• FlashAttention: tiling to reduce GPU global memory access

• Auto-regressive Decoding: pre-filling and decoding phases, KV cache

• FlashDecoding: improving attention’s parallelism by splitting

keys/values

• PagedAttention: paging and virtualization to reduce KV cache’s

memory requirement

40

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

41

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1: Attention Optimizations
	Slide 2: Attention: O = Softmax(QKT) V
	Slide 3
	Slide 4
	Slide 5: Revisit: GPU Memory Hierarchy
	Slide 6: FlashAttention
	Slide 7: Tiling: Decompose Large Softmax into smaller ones by Scaling
	Slide 8: Tiling
	Slide 9: Recomputation: Backward Pass
	Slide 10: FlashAttention: Threadblock-level Parallelism
	Slide 11: FlashAttention: Threadblock-level Parallelism
	Slide 12: FlashAttention: Threadblock-level Parallelism
	Slide 13: FlashAttention: Warp-Level Parallelism
	Slide 14: FlashAttention: 2-4x speedup, 10-20x memory reduction
	Slide 15
	Slide 16: Generative LLM Inference: Autoregressive Decoding
	Slide 17: Generative LLM Inference: Autoregressive Decoding
	Slide 18: Generative LLM Inference: Autoregressive Decoding
	Slide 19: Generative LLM Inference: Autoregressive Decoding
	Slide 20: Can We Apply FlashAttention to LLM Inference?
	Slide 21: FlashAttention Processes K/V Sequentially
	Slide 22: FlashAttention Processes K/V Sequentially
	Slide 23: Flash-Decoding is up to 8x faster than prior work
	Slide 24: KV Cache Dynamically Grows and Shrinks
	Slide 25: KV Cache Dynamically Grows and Shrinks
	Slide 26: KV Cache Dynamically Grows and Shrinks
	Slide 27: KV Cache Dynamically Grows and Shrinks
	Slide 28: Static KV Cache Management Wastes Memory
	Slide 29: Significant Memory Waste in KV Cache
	Slide 30: PagedAttention
	Slide 31: Paging KV Cache Space into KV Blocks*
	Slide 32: Virtualizing KV Cache
	Slide 33: Attention with Virtualized KV Cache
	Slide 34: Memory Management with PagedAttention
	Slide 35: Memory Management with PagedAttention
	Slide 36: Memory Management with PagedAttention
	Slide 37: Memory Management with PagedAttention
	Slide 38: Memory Management with PagedAttention
	Slide 39: Memory Efficiency of PagedAttention
	Slide 40: Recap: Techniques for Optimizing Attention
	Slide 41: Acknowledgement
	Slide 42: Thanks

