System for Artificial Intelligence

Attention Optimizations

Siyuan Feng
Shanghai Innovation Institute

‘ Attention: O = Softmax(QK") V LB Y8R

Shanghai Innovation Institute

=

xd K:Nxd A=QKT:NxN A = mask(A)

>

Q: = softmax(A):N X N V:Nxd O=AV:Nxd

\ 4

X
I

[
X
[

Challenges:

* Large intermediate results

* Repeated reads/writes from GPU device memory

e Cannot scale to long sequences due to O(N”2) intermediate results

AN

@ » LLM Training
@ » LLM Inference

¢

Ol

LLM Training

y N .

i

FlashAttention f Lol 8 R

Shanghai Innovation Institute
A = softmax(QKT)

* Key idea: compute attention by blocks to reduce EEEEEEEE

lobal memory access HEREEEEEN
5 y EEEEEEEE

* Two main Techniques:

1. Tiling: restructure algorithm to load query/key/value block by block
from global to shared memory

2. Recomputation: don’t store attention matrix from forward,
recompute it in backward

V o

-

iling: Decompose Large Softmax into smaller ones Q‘ b o) s s
H Shanghai Innovation Institute
by Scallng Quter Loop .
_ K:dxN [HNNNNEEN
1. Load inputs by blocks from global to Copy lockto SFA
Q:N xd Outerloop =~ y:Nxd
shared memory T S REELECECECE m
_ _ | - |
2. On chip, compute attention output wrt §l S W M = 5
the block 5 (I copy |z Mg
£ o ©
. . 11O
3. Update output in device memory by R
Sca I i ng Output to HBM

sm(QK")V:N x d

Inner Loop

FlashAttention

softmax([44,4,]) = |a X softmax (4,),B X softmax(4,)]

softmax([A44, A5]) [51] = a X softmax(4,) V; + B X softmax(4,)V,
2

‘\

Shanghai Innovation Institute
Keys (NxK)
[HORRRRREARRRRRERRRRRRRROAARRRERORRRRRECACRRRERRA

I

AR RO

—
prm—
—_—
—_—
—_——
—_—
—
—
—
[—
—
—
[e—
)

Queries (NxK) Output Values

(NxK) (NxK)
8 A

! g el 8 F bk

Recomputation: Backward Pass

Shanghai Innovation Institute

Outer Loop .
* By storing softmax normalization factors PP [[[[[[

Copy Block to SRAM
from forward (size N), recompute attention

Q:N xd Outerloop =~ y:Nxd
. . o F o m g m ey —m—m—mm—m—m - — — — |
in the backward from inputs in shared = x : }
e ' O
memaor o/l 3 ' copy [l (S
y § “ onSRA?\LIOCk : § . 3
5 [e 13 Mg
. c N |5 W s
Standard FlashAttention - |- 2 M
{8 I
GFLOPs 66.6 75.2 Output to HBM
Global mem access 40.3 GB 4.4 GB sm(QKT)V:N x d
Inner Loop
Runtime 41.7 ms 7.3 ms

FlashAttention

Speed up backward pass with increased FLOPs

V o

" 4 o

FlashAttention: Threadblock-level Parallelism % L& & & = B

Shanghai Innovation Institute
Outer Loop

How to partition FlashAttention across :dxy EEEEEEEE
thread blocks? opy Blecktomi

Q:N x d L _?ft_eito_O_P___; V:Nxd

(An A100 has 108 SMMs -> 108 thread e -
@ 5 o |2
blocks) S| s S |
o | copv | 1] 2 M5
s|m e WS

L s =

* Step 1. assign different heads to v TR —— v

QOutput to HBM

different thread blocks (16-64 heads) sm(QKTYWV: N X d

Inner Loop

FlashAttention

V o

FlashAttention: Threadblock-level Parallelism f Lol 8 R

Shanghai Innovation Institute

Outer Loop .
How to partition FlashAttention across thread T:dx v HEEEEEEE
b I O Cks ? Co(:y Block to SRAM
Q:Nxd _ __ft_eitfio_p___; V:NXxd
(An A100 has 108 SMMs -> 108 thread blocks) l : B
| cory M |
8 .—b onSRA?\LIOCk : =1 . Q
E B copy ! Eé B g
e Step 1: assign different heads to different = = g = S

thread blocks (16-64 heads)

Output to HBM

- . . sm(QK")V:N x d
e Step 2: assign different queries to nner Loop

different thread blocks (Why?) FlashAttention

Thread blocks cannot communicate; cannot perform softmax when
partitioning keys/values

' FlashAttention: Threadblock-level Parallelism

Keys/Values

Queries

Forward pass

Do we need to handle workload imbalance?

Block 1
Block 2
Block 3
Block 4
Block 5

R

Shanghai Innovation Institute

No. GPU scheduler automatically loads the next block once the

current one com pletes.

L

' FlashAttention: Warp-Level Parallelism LB 88 R

Shanghai Innovation Institute

* How to partition FlashAttention across warps within a thread block?

K'T HT
______ weroz | W3 | waro | Warp 1-4
Warp1l | Warp2 Warp 3 : Warp 4
' Vv
'+ I e e e ol Tp— Q 4
1 1
Warp 1-4 Warpl | - Warp1
|
Warp 2 . Warp 2 : Warp 1-4
______ S I
Warp 3 []
______ . Warp3 :
: ______
Warp 4 | |
______ . Warp4 |
Accessed by all warps R !

Accessed by all warps

: Split across different warps

: Split across different warps

(a) FLASHATTENTION (b) FLASHATTENTION-2

@Splitting across K/V requires Splitting across Q avoids @

communication to add results communications A
13

FlashAttention: 2-4x speedup, 10-20x memory reductiong® L i8 & & % k

Speed (TFLOPs/s)

200

150 4

100 1

u
o
1

Shanghai Innovation Institute

Attention forward + backward speed (A100 80GB SXM4)

Pytorch

xformers

512

FlashAttention

FlashAttention Triton
FlashAttention-2

FlashAttention Memory Reduction

189 20 7 mmm Dropout + Masking

182

15 +
133

10

Memory Reduction (X times less)

128 256 512 1024 2048 4096
1k 2k 4k 8k 16k Sequence Length
Sequence length

* Memory linear in sequence length

02

LLM Inference
(Auto-regressive Decoding)

y N <,

' Generative LLM Inference: Autoregressive Decoding Lt s 8l 8 2

Shanghai Innovation Institute

Input Prompt: [Accelerating LLM requires machine] - > |earning pr> systems e optimizations
Iter O Iter 1 Iter 2 Iter 3
Layler 1 Layler 1 Layler 1 Layler 1
Layler 2 Layler 2 Layler 2 Layler 2
Layler 3 Layler 3 Layler 3 Layler 3
| | | |
Outputs: learning systems optimizations [EOS]

F A "

Attention Score

Acc.| 1
LLM|{ 2 | O
requires| 5 | 1 | 3
machine| 2 |0 | 1|1 Y
S = ¢ ¢ Layer 3
< o £ =
5 5 |
T ©
& t

Pre-filling Phase

Layer 3

Attention Score

learning | 1 | O 7| 1| 2
()

g 2 ¢ 2 2

< = 5 5 €

T & ©

g g w

Decoding Phase

B e85k

Shanghai Innovation Institute

v «

Generative LLM Inference: Autoregressive Decoding

* Pre-filling phase (0-th iteration):

* Process all input tokens at once

* Decoding phase (all other iterations):
* Process a single token generated from previous iteration

e Use attention keys & values of all previous tokens

e Key-value cache:

* Save attention keys and values for the following iterations to avoid
recomputation

19

y

" 4 o

Can We Apply FlashAttention to LLM Inference? g* L i3 8 8 = b

Shanghai Innovation Institute

Attention Comp.

Attention Comp.

Acc.
LLM learning
requires <tt§ % ,é % %"
machine ;‘; é E
N
= qg)_ B
s €
* Pre-filling phase: * Decoding phase:

* Yes, compute different queries using ¢ No, there is a single query in the
different thread blocks/warps decoding phase

V o

' FlashAttention Processes K/V Sequentially £ B8l 8 % [k

Shanghai Innovation Institute

Values

Keys

Queries .

Output

Inefficient for requests with long context (many keys/values)

4N

' FlashAttention Processes K/V Sequentially Lo ER

Shanghai Innovation Institute

1. Split keys/values into small chunks
2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits
Values

Keys

Queries | S

Output

Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5

Key insight: attention is associative and commutative A

' Flash-Decoding is up to 8x faster than prior work LB s R

Shanghai Innovation Institute

CodelLlama-34b end-to-end decoding speed [bs=1, MP=4]

50
40 .
30 -
2
8
20 -
10 4 — pytorch primitives
—— flash-attention
—— FT attention
—— flash-decoding

10° 104
Prompt length

KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine]

Attention Matrix

Acc.

LLM
requires

machine

1
210
5(1]|3
21011

= S|

O ©

g £
KV Cache

Ilter O

|

Layer 1

|

Layer 2

}

Layer 3

!

Outputs: learning

(o]0
E n
= v
| - —
(D} >
——n (@)
S o
(@]
<C

Lt s s 2R

Shanghai Innovation Institute

[Accelerating LLM requires machine]

Attention Matrix

learning

Acc.

LLM

requires
machine

KV Cache

learning

Outputs:

o0
k=
=

©

S
o

3

O

O
<<

Ilter O

|

Layer 1

|

Layer 2

}

Layer 3

!

Iearn|ng i

requires

learning

KV Cache Dynamically Grows and Shrinks

% |earning

lter 1

|

Layer 1

|

Layer 2

|

Layer 3

!

systems

Lt s s 2R

Shanghai Innovation Institute

Attention Matrix

learning

[Accelerating LLM requires machine]

Acc.

LLM

requires

machine

KV Cache

learning

systems

Outputs:

o0
k=
=

©

S
o

3

O

O
<<

Ilter O

|

Layer 1

|

Layer 2

}

Layer 3

!

Iearning ;

requires

learning

% |earning

lter 1

|

Layer 1

|

Layer 2

|

Layer 3

!

systems

KV Cache Dynamically Grows and Shrinks

7> systems

Ilter 2

|

Layer 1

|

Layer 2

|

Layer 3

!

optimizations

F

Lt s s 2R

Shanghai Innovation Institute

learning

KV Cache Dynamically Grows and Shrinks

[Accelerating LLM requires machine] > learning
Iter O Iter 1
Attention Matrix Layer 1 Layer 1
Layer 2 Layer 2
8 S 0 Q o v]
SRR | |
T ® © 92
L g 2 o Layer 3 Layer 3
Outputs: learning = systems
IIIIIIII : IIlIIIII
c
B g g
KV Cache ko =] S
) (0]
O L Q@
O
<<

Lt s s 2R

Shanghai Innovation Institute

> systems > optimizations
| Iter 2 Iter 3
Layler 1 Layler 1
Layler 2 Layler 2
Layler 3 Layler 3
| |
-------- optimizations [EOS]

Dy, (.

(%]
C
9
-+
O
gIsl
&
=)
o
)

" 4 «

Static KV Cache Management Wastes Memory * L3 & & 5 b

Shanghai Innovation Institute

0 A’s max length
\ A)
Y
3 KV Cache slots for Pre-allocated sIots for A’s output Externa/frag. Request B

request A’s prompt (Internal frag.)

* Pre-allocates contiguous space of memory to the request’s maximum
length

* Memory fragmentation

* Internal fragmentation due to unknown output length

28

* External fragmentation due to non-uniform per-request max lengths a

' Significant Memory Waste in KV Cache L8 el 8] 3k

Shanghai Innovation Institute

* Only 20-40% of KV cache is utilized to store actual token states

M KV Cache ™" Internal frag. M External frag. & Others
100

80 -

60 -

40 -

20 -

KV Cache space usage (%)

Orca Orca Orca vilm
(Max) (Pow2) (Oracle)

7

PagedAttention

y_

Crees=zp

' Shanghai Innovation Institute

e Application-level memory paging and virtualization for KV cache

Memory management in OS

Page O

Process Page 1
A Page 2
Page 3

Page 4

Physical Memory

Process
B

Request
A

PagedAttention

KV Block O
KV Block 1 e
KV Block 2 B

KV Block 3
KV Block 4

KV Cache

30

" 4 ol

Paging KV Cache Space into KV Blocks* g L& e &R
* KV block is a fixed-size contiguous KV blocks
chunk of memory that stores KV block 0
states from left to right block 1
block 2
block 3 W“h?
block 4 | arificial | '™e1E€ s the
block 5 SW
block 6
block 7
\ v)

Block size =4

%k “") . 1
The term “block” is overloaded in PagedAttention . : \

B e85k

Shanghai Innovation Institute

v «

Virtualizing KV Cache

Physical KV blocks

Request
A block 0
Prompt: “Alan Turing is a computer scientist” block 1| computer | scientist
. block 2
Logical KV blocks
Block table block 3
bIOCk O Alan Turing is a Physical block # Filled
\. number bIOCk 4
block 1 computer scientist / 4
\ . 5 block 5
block 2 - - block 6
bIOCk 3 _ _ block 7 Alan Turing is a

v 4

Attention with Virtualized KV Cache

¥

1. Fetch non-contiguous KV blocks using the block table

2. Apply attention on the fly

Block table

Physical block
number

Filled

4

4

5
Query for < 0
2

2

Key insight: attention is associative and commutative

Block 1

Block 2

Block O

KV Cache

E Bt 8 F Kk

Shanghai Innovation Institute

computer

scientist

and

mathe-
matician

renowed

for

Alan

Turing

v 4 o

Memory Management with PagedAttention g L B8 8 F Ik

Shanghai Innovation Institute

Request Physical KV blocks

A block 0

Prompt: “Alan Turing is a computer scientist” blOCk 1| computer | scientist

Completion: “and block 2
Logical KV blocks
Block tabl
R block 3
bIOCk O Alan Turing is a Physical block # Filled
number
N block 4
block 1 computer scientist / 4
.)) block 5
block 2
- - block 6
bIOCk 3 - _ bIOCk 7 Alan Turing is a

v o

Memory Management with PagedAttention g L B8 8 F Ik

Shanghai Innovation Institute

Request Physical KV blocks

A block 0

Prompt: “Alan Turing is a computer scientist” blOCk 1| computer | scientist

Completion: “and” block 2
Logical KV blocks Block table
block 3
bIOCk O Alan Turing is a Physical block # Filled
number
N block 4
block 1 computer scientist and / 4
.)) block 5
block 2
- - block 6
bIOCk 3 - _ bIOCk 7 Alan Turing is a

v o

Memory Management with PagedAttention g L B8 8 F Ik

Shanghai Innovation Institute

Request Physical KV blocks

A block 0

Prompt: “Alan Turing is a computer scientist” block 1 | computer | scientist and

Completion: “and” block 2
Logical KV blocks Block table
block 3
bIOCk O Alan Turing is a Physical block # Filled
number
N block 4
block 1 computer scientist and / 4
.) Z block 5
block 2
- - block 6
bIOCk 3 - _ bIOCk 7 Alan Turing is a

v o

Memory Management with PagedAttention g L B8 8 F Ik

Shanghai Innovation Institute

Physical KV blocks

Request
A block 0
S mathem
Prompt: “Alan Turing is a computer scientist” block 1 | computer | scientist and atician
Completion: “and mathematician” block 2
Logical KV blocks Block table block 3
bIOCk O Alan Turing is a \. Physical block # Filled
number
block 4
block 1 computer scientist and ma.them / 4
atician bl k 5
1 4 ocC
block 2
- - block 6
bIOCk 3 _ _ bIOCk 7 Alan Turing is a

" 4 »

Memory Management with PagedAttention g L B8 8 F Ik

Shanghai Innovation Institute

Physical KV blocks

Request
A block O
S mathem
Prompt: “Alan Turing is a computer scientist” block 1| computer | scienist and atician
Completion: “and mathematician renowned” block 2
Logical KV blocks Block table block 3
block 0 i i - |
Alan furing ; ° o mber || #Filled Allocated on demand
block 4
block 1 computer scientist and r::itcf;::\ / 4 (|
1 4 blOCk 5 renowned I
block 2 | renowned _ A e e e e
” 5 1 block 6
bIOCk 3 _ _ bIOCk 7 Alan Turing is a

V o

' Memory Efficiency of PagedAttention

Minimal internal fragmentation

e Only happens at the last block of a sequence

e # wasted tokens / seq < block size

No external fragmentation

R

Shanghai Innovation Institute

Alan Turing is a
. mathemati
computer scientist and .
cian
renowned
\)

M KV Cache @ Internal frag. M External frag. & Others

100

80 -

60 -

KV Cache space usage (%)

Orca Orca
(Max) (Pow?2)

Orca
(Oracle)

viim

Internal
fragmentation

Y

AN

Recap: Techniques for Optimizing Attention f Lt s 8l 8 =
* FlashAttention: tiling to reduce GPU global memory access

* Auto-regressive Decoding: pre-filling and decoding phases, KV cache

* FlashDecoding: improving attention’s parallelism by splitting
keys/values

* PagedAttention: paging and virtualization to reduce KV cache’s
memory requirement

y
Acknowledgement S LEoEsR

Shanghai Innovation Institute

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and
institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.
- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely
our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

41

System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute

	Slide 1: Attention Optimizations
	Slide 2: Attention: O = Softmax(QKT) V
	Slide 3
	Slide 4
	Slide 5: Revisit: GPU Memory Hierarchy
	Slide 6: FlashAttention
	Slide 7: Tiling: Decompose Large Softmax into smaller ones by Scaling
	Slide 8: Tiling
	Slide 9: Recomputation: Backward Pass
	Slide 10: FlashAttention: Threadblock-level Parallelism
	Slide 11: FlashAttention: Threadblock-level Parallelism
	Slide 12: FlashAttention: Threadblock-level Parallelism
	Slide 13: FlashAttention: Warp-Level Parallelism
	Slide 14: FlashAttention: 2-4x speedup, 10-20x memory reduction
	Slide 15
	Slide 16: Generative LLM Inference: Autoregressive Decoding
	Slide 17: Generative LLM Inference: Autoregressive Decoding
	Slide 18: Generative LLM Inference: Autoregressive Decoding
	Slide 19: Generative LLM Inference: Autoregressive Decoding
	Slide 20: Can We Apply FlashAttention to LLM Inference?
	Slide 21: FlashAttention Processes K/V Sequentially
	Slide 22: FlashAttention Processes K/V Sequentially
	Slide 23: Flash-Decoding is up to 8x faster than prior work
	Slide 24: KV Cache Dynamically Grows and Shrinks
	Slide 25: KV Cache Dynamically Grows and Shrinks
	Slide 26: KV Cache Dynamically Grows and Shrinks
	Slide 27: KV Cache Dynamically Grows and Shrinks
	Slide 28: Static KV Cache Management Wastes Memory
	Slide 29: Significant Memory Waste in KV Cache
	Slide 30: PagedAttention
	Slide 31: Paging KV Cache Space into KV Blocks*
	Slide 32: Virtualizing KV Cache
	Slide 33: Attention with Virtualized KV Cache
	Slide 34: Memory Management with PagedAttention
	Slide 35: Memory Management with PagedAttention
	Slide 36: Memory Management with PagedAttention
	Slide 37: Memory Management with PagedAttention
	Slide 38: Memory Management with PagedAttention
	Slide 39: Memory Efficiency of PagedAttention
	Slide 40: Recap: Techniques for Optimizing Attention
	Slide 41: Acknowledgement
	Slide 42: Thanks

