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Attention: O = Softmax(QKT) V 

Challenges:

• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results
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× ×

Q: N × d K: N × d A = QKT: N × N A = mask(A) A = softmax A : N × N V: N × d O= AV:N×d
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Revisit: GPU Memory Hierarchy 
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Per-block shared memory 

(readable/writable by all 

threads in a block)

Grid 0

Block(0,0) Block(1,0) Block(2,0)

Block(0,1) Block(1,1) Block(2,1)

Device global memory

(readable/writable by all 

threads)

19 TB/s (20 MB)

1.5 TB/s (80 GB)



FlashAttention

• Key idea: compute attention by blocks to reduce

global memory access
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• Two main Techniques:

1. Tiling: restructure algorithm to load query/key/value block by block

from global to shared memory

2. Recomputation: don’t store attention matrix from forward,

recompute it in backward

𝐴 = softmax 𝑄𝐾𝑇



Tiling: Decompose Large Softmax into smaller ones 
by Scaling

1. Load inputs by blocks from global to
shared memory

2. On chip, compute attention output wrt
the block

3. Update output in device memory by
scaling

7

softmax 𝐴1, 𝐴2 = 𝛼 × softmax 𝐴1 , 𝛽 × softmax(𝐴2)

softmax 𝐴1, 𝐴2
𝑉1
𝑉2

= 𝛼 × softmax 𝐴1 𝑉1 + 𝛽 × softmax(𝐴2)𝑉2

KT: 𝑑 × 𝑁
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Tiling 
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Recomputation: Backward Pass  
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FlashAttention

• By storing softmax normalization factors
from forward (size N), recompute attention
in the backward from inputs in shared
memory

Speed up backward pass with increased FLOPs

Attention Standard FlashAttention

GFLOPs 66.6 75.2

Global mem access 40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms



FlashAttention: Threadblock-level Parallelism 
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FlashAttention

How to partition FlashAttention across

thread blocks?

(An A100 has 108 SMMs -> 108 thread

blocks)

• Step 1: assign different heads to

different thread blocks (16-64 heads)



FlashAttention: Threadblock-level Parallelism

11

How to partition FlashAttention across thread

blocks?

(An A100 has 108 SMMs -> 108 thread blocks)

• Step 1: assign different heads to different

thread blocks (16-64 heads)

• Step 2: assign different queries to

different thread blocks (Why?)

Thread blocks cannot communicate; cannot perform softmax when

partitioning keys/values

FlashAttention



FlashAttention: Threadblock-level Parallelism
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No. GPU scheduler automatically loads the next block once the

current one completes.

Do we need to handle workload imbalance?

Block 1

Block 2

Block 3

Block 4

Block 5

Queries

Keys/Values 

Forward pass



FlashAttention: Warp-Level Parallelism 
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Splitting across Q avoids

communications

Splitting across K/V requires

communication to add results

• How to partition FlashAttention across warps within a thread block?



FlashAttention: 2-4x speedup, 10-20x memory reduction 
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• Memory linear in sequence length
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02
LLM Inference
(Auto-regressive Decoding)



Generative LLM Inference: Autoregressive Decoding
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[Accelerating LLM requires machine] learning systems optimizations Input Prompt:

Outputs:



Generative LLM Inference: Autoregressive Decoding
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Generative LLM Inference: Autoregressive Decoding
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Generative LLM Inference: Autoregressive Decoding

• Pre-filling phase (0-th iteration):

• Process all input tokens at once

• Decoding phase (all other iterations):

• Process a single token generated from previous iteration

• Use attention keys & values of all previous tokens

• Key-value cache:

• Save attention keys and values for the following iterations to avoid

recomputation
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Can We Apply FlashAttention to LLM Inference?

• Pre-filling phase:

• Yes, compute different queries using

different thread blocks/warps
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• Decoding phase:

• No, there is a single query in the

decoding phase



FlashAttention Processes K/V Sequentially 
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Inefficient for requests with long context (many keys/values)



FlashAttention Processes K/V Sequentially 
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Key insight: attention is associative and commutative

1. Split keys/values into small chunks

2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits

Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5



Flash-Decoding is up to 8x faster than prior work
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KV Cache Dynamically Grows and Shrinks

24

Attention Matrix

1

2 0

5 1 3

2 0 1 1

Acc.

LLM

requires

machine

A
cc

.

LL
M

re
qu

ir
es

m
ac

h
in

e
Layer 1

Iter 0

Layer 2

Layer 3

learning 

[Accelerating LLM requires machine]

Outputs:

KV Cache

A
cc

el
er

at
in

g

LL
M

re
q

ui
re

s

m
ac

h
in

e



KV Cache Dynamically Grows and Shrinks
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KV Cache Dynamically Grows and Shrinks
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KV Cache Dynamically Grows and Shrinks
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Static KV Cache Management Wastes Memory
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• Pre-allocates contiguous space of memory to the request’s maximum

length

• Memory fragmentation

• Internal fragmentation due to unknown output length

• External fragmentation due to non-uniform per-request max lengths

Artificial
Intellige

nce
is <resv> <resv> … <resv> <resv> … … Alan Turing …

3 KV Cache slots for 
request A’s prompt

Pre-allocated slots for A’s output

(Internal frag.)
External frag. Request B 

0 3 A’s max length 



Significant Memory Waste in KV Cache
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• Only 20-40% of KV cache is utilized to store actual token states



PagedAttention
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• Application-level memory paging and virtualization for KV cache

Memory management in OS PagedAttention

Page 0

Page 1

Page 2

Page 3

Page 4

Process
A

Process
B

Physical Memory

KV Block 0

KV Block 1

KV Block 2

KV Block 3

KV Block 4

Request
A

Request
B

KV Cache



Paging KV Cache Space into KV Blocks*
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• KV block is a fixed-size contiguous

chunk of memory that stores KV

states from left to right

Artificial
Intellige

nce
is the

KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4 

KV Cache

Space

* The term “block” is overloaded in PagedAttention



Virtualizing KV Cache
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computer scientist

Alan Turing is a

Physical KV blocks
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block 1

block 2

block 3
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Physical block 
number 

# Filled

7 4

1 2

- -

- -

Block table



Attention with Virtualized KV Cache
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computer scientist and
mathe-

matician

renowed for

Alan Turing is a

KV Cache

Block 0

Block 1

Block 2

Physical block 
number 

# Filled

5 4

0 4

2 2

- -

Block table

1. Fetch non-contiguous KV blocks using the block table

2. Apply attention on the fly

forQuery

Key insight: attention is associative and commutative



Memory Management with PagedAttention
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Memory Management with PagedAttention
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Memory Management with PagedAttention
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computer scientist and

Alan Turing is a

Physical KV blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

Alan Turing is a

computer scientist and

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 0

block 1

block 2

block 3

Physical block 
number 

# Filled

7 4

1 3

- -

- -

Block table

Completion: “and”

Logical KV blocks



Memory Management with PagedAttention
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computer scientist and
mathem
atician

Alan Turing is a

Physical KV blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

Alan Turing is a

computer scientist and
mathem
atician

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 0

block 1

block 2

block 3

Physical block 
number 

# Filled
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1 4

- -

- -
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Completion: “and mathematician”
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Memory Management with PagedAttention
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computer scientist and
mathem
atician

renowned

Alan Turing is a

Physical KV blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

Alan Turing is a

computer scientist and
mathem
atician

renowned

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 0

block 1

block 2

block 3

Physical block 
number 

# Filled

7 4

1 4

5 1

- -

Block table

Completion: “and mathematician renowned”

Logical KV blocks

Allocated on demand



Memory Efficiency of PagedAttention
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Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

No external fragmentation

Alan Turing is a

computer scientist and 
mathemati

cian

renowned

Internal 
fragmentation 



Recap: Techniques for Optimizing Attention 

• FlashAttention: tiling to reduce GPU global memory access

• Auto-regressive Decoding: pre-filling and decoding phases, KV cache

• FlashDecoding: improving attention’s parallelism by splitting

keys/values

• PagedAttention: paging and virtualization to reduce KV cache’s

memory requirement
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