
Siyuan Feng

Shanghai Innovation Institute

System for Artificial Intelligence

Parallelization and Training I

Recap: DNN Training Overview

Objective

Training
2

ො𝑦𝑖 =
1

1 + exp −𝑤𝑇𝑥𝑖

layer1
extractor

layer2
extractor

predictor

𝐿 𝑤 =෍

𝑖=1

𝑛

𝑙 𝑦𝑖 , ො𝑦𝑖 + 𝜆 𝑤
2

𝑤 ← 𝑤 − 𝜂∇𝑤𝐿 𝑤

DNN Training Process

• Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and
run calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error

for each trainable weight

3. Weight update: use the loss value to update model weights

3

Model inputs Model prediction

DNN Training Process

• Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and
run calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error

for each trainable weight

3. Weight update: use the loss value to update model weights

4

Model inputs

DNN Training Process

• Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and
run calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error

for each trainable weight

3. Weight update: use the loss value to update model weights

5

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾
𝜕𝐿 𝑤

𝜕𝑤𝑖
= 𝑤𝑖 −

𝛾

𝑛
෍

𝑗=1

𝑛
𝜕𝑙𝑖 𝑤

𝜕𝑤𝑖

Gradients of
individual samples

How can we parallelize DNN training?

6

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗 𝑤𝑖

Data Parallelism

7

ML Model

Training Dataset

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗 𝑤𝑖

1. Partition training data into batches 2. Compute the gradients of
each batch on a GPU

3. Aggregate gradients
across GPUs

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Data Parallelism: Parameter Server

8

Parameter Servers

Model
Replicas

Data

…

…

∆𝑝′ 𝑝′

𝑝′′ = 𝑝′ + ∆𝑝

Workers push gradients to
parameter servers and pull
updated parameters back

Inefficiency of Parameter Server

9

• Centralized communication: all workers communicate with

parameter servers for weights update; cannot scale to large numbers
of workers

• How can we decentralize communication in DNN training?

Inefficiency of Parameter Server

10

• Centralized communication: all workers communicate with

parameter servers for weights update; cannot scale to large numbers
of workers

• How can we decentralize communication in DNN training?

• All-Reduce: perform element-wise reduction across multiple devices

in 0 in 1 in 2 in 3

rank 0 rank 1 rank 2 rank 3

out out out out

rank 0 rank 1 rank 2 rank 3

out 𝑖 = 𝑠u𝑚 ln𝑋 𝑖

Different Ways to Perform All-Reduce

11

• Naïve All-Reduce

• Ring All-Reduce

• Tree All-Reduce

• Butterfly All-Reduce

Naïve All-Reduce

• Each worker can send its local gradients to all other workers

• If we have N workers and each worker contains M parameters

• Overall communication: N * (N-1) * M parameters

• Issue: each worker communicates with all other workers; same scalability

issue as parameter server

12

17 11 1 9

Worker A

5 13 23 14

Worker B

3 6 10 8

Worker C

12 7 2 12

Worker D

Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to

the next worker on the ring; repeat N times

13

a0 a1 a2 a3

Worker A

b0 b1 b2 b2

Worker B

c0 c1 c2 c3

Worker C

d0 d1 d2 d3

Worker D

Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to

the next worker on the ring; repeat N times

14

Worker A

b0 b2 b2

Worker B

c0 c1 c3

Worker C

d0 d1 d2

Worker D

a0

b1c2

d3
a1 a2 a3

Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to

the next worker on the ring; repeat N times

15

a1 a2

Worker A

b2 b2

Worker B

c0 c3

Worker C

d0 d1

Worker D

a0+b0

d3+a3

b1+c1

c2+d2

Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next
worker on the ring; repeat N times

• After step 1, each worker has the aggregated version of M/N parameters

16

r1

Worker A

r2

Worker B

r3

Worker C

r0

Worker D

r1

r2r3

r0

𝑟𝑖 = 𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖

Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next
worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters to the
next worker; repeat N times

17

r1

Worker A

r2

Worker B

r3

Worker C

r0

Worker D

r1

r2r3

r0

𝑟𝑖 = 𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖

Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next
worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters to the
next worker; repeat N times

18

r0 r1 r2 r3

Worker A

r0 r1 r2 r3

Worker B

r0 r1 r2 r3

Worker C

r0 r1 r2 r3

Worker D

𝑟𝑖 = 𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖

Ring All-Reduce

19

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to

the next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated

parameters to the next worker; repeat N times

• Overall communication: 2 * M * N parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters

Tree All-Reduce

20

• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children;

repeat log(N) times
10

4 7

2 65 1

11

35

3535 35 35

35

14

6152

Worker 0 Worker 1 Worker 2 Worker 3

Worker 5Worker 4

Worker 6

Tree All-Reduce

21

• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent;

repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children;

repeat log(N) times

• Overall communication: 2 * N * M parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters

Butterfly Network

22

0 1 0 1 2 3 0 1 2 3 4 5 6 70

0 1 0 1 2 3 0 1 2 3 4 5 6 71

2 3 0 1 2 3 0 1 2 3 4 5 6 72

2 3 0 1 2 3 0 1 2 3 4 5 6 73

4 5 4 5 6 7 0 1 2 3 4 5 6 74

4 5 4 5 6 7 0 1 2 3 4 5 6 75

6 7 4 5 6 7 0 1 2 3 4 5 6 76

6 7 4 5 6 7 0 1 2 3 4 5 6 77

Butterfly All-Reduce

• Repeat log(N) times:

1. Each worker sends M parameters

to its target node in the butterfly

network

2. Each worker aggregates gradients

locally

• Overall communication: N * M * log(N)

parameters

23

Comparing different All-Reduce Methods

• Question: Ring All-Reduce is more efficient and scalable then Tree

All-Reduce and Parameter Server, why?

24

Parameter
Server

Naïve All-
Reduce

Ring All-
Reduce

Tree All-
Reduce

Butterfly All-
Reduce

Overall
communication

2 × 𝑁 ×𝑀 𝑁2 ×𝑀 2 × 𝑁 ×𝑀 2 × 𝑁 ×𝑀
𝑁 ×𝑀 ×
log𝑁

Ring v.s. Tree v.s. Parameter Server

Each worker sends M/N parameters

per iteration; repeat for 2*N iterations

Latency: M/N * (2*N) / bandwidth

25

Ring All-Reduce:

• Best latency

• Balanced workload across workers

• More scalable since each worker

sends 2*M parameters (independent to
the number of workers)

Each worker sends M parameters per iteration;

repeat for 2*log(N) iterations

Latency: M * 2 * log(N) / bandwidth

All workers send M parameters to

parameter servers and receive M

parameters from servers

Latency: M * N / bandwidth

An Issue with Data Parallelism

• Each GPU saves a replica of the

entire model

• Cannot train large models that

exceed GPU device memory

26

Large Model Training Challenges

27

BertLarge GPT-2
Turing

17.2 NLG
GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative
Computation

1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

Large Model Training Challenges

28

BertLarge GPT-2
Turing

17.2 NLG
GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative
Computation

1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

NVIDIA V100 GPU memory capacity: 16G/32G
NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory

ZeRO: Zero Redundancy Optimizer

• Eliminating data redundancy in

data parallel training

• A widely used technique for

data parallel training of large

models

29

Δ𝑤 = 𝜂 𝑥
1

𝑏
෍

𝑖=1

𝑏

∇ 𝑙𝑜𝑠𝑠 𝑓𝑤 𝑥𝑖, 𝑦𝑖

Revisit: Stocastic Gradient Descent

30

For t = 1 to T

// compute derivative and update

w −= ∆w // apply update

End

Backward pass Forward pass

Adapted from Minjia Zhang, DeepSpeed Presentation

Adaptive Learning Rates (Adam)

31

Understanding Memory Consumption

32

A 16-layer transformer model = 1 layer

Adapted from Minjia Zhang, DeepSpeed Presentation

Understanding Memory Consumption

33

Each cell represents GPU memory used by its corresponding transformer layer

Adapted from Minjia Zhang, DeepSpeed Presentation

Understanding Memory Consumption

34

• FP16 parameter

Adapted from Minjia Zhang, DeepSpeed Presentation

Understanding Memory Consumption

35

• FP16 parameter
• FP16 Gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

Understanding Memory Consumption

36

• FP16 parameter
• FP16 Gradients
• FP32 Optimizer States

· Gradients, Variance, Momentum, Parameters

Adapted from Minjia Zhang, DeepSpeed Presentation

Understanding Memory Consumption

37

• FP16 parameter：2M bytes
• FP16 Gradients：2M bytes
• FP32 Optimizer States ：16M bytes

· Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

Adapted from Minjia Zhang, DeepSpeed Presentation

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
• Input batch + activations

ZeRO-DP: ZeRO powered Data Parallelism

• ZeRO removes the redundancy across data parallel process

• Stage 1: partitioning optimizer states

• Stage 2: partitioning gradients

• Stage 3: partitioning parameters

38

ZeRO Stage 1: Partitioning Optimizer States

39

• ZeRO Stage 1
• Partitions optimizer states across GPUs

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

40

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

41

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

42

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

43

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

44

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

45

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

46

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

47

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

48

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

49

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

50

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

51

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

52

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

53

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

54

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

55

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average
• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

56

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average
• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

57

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average
• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

58

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average
• Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

59

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average
• Update the FP32 weights with ADAM optimizer
• Update the FP16 weights

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

60

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average
• Update the FP32 weights with ADAM optimizer
• Update the FP16 weights
•

Adapted from Minjia Zhang, DeepSpeed Presentation

ZeRO Stage 1: Partitioning Optimizer States

61

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average
• Update the FP32 weights with ADAM optimizer
• Update the FP16 weights
• All Gather the FP16 weights to complete the iteration

ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume

62

ZeRO Stage 2: Partitioning Gradients

63

• Partitioning gradients across GPUs
• The forward process remains the same as stage 1

ZeRO Stage 2: Partitioning Gradients

64

• Partitioning gradients across GPUs
• Perform All-Reduce right after back propagation of each layer

ZeRO Stage 2: Partitioning Gradients

65

• Partitioning gradients across GPUs
• Only one GPU keeps the gradients after All-Reduce

ZeRO Stage 2: Partitioning Gradients

66

• Partitioning gradients across GPUs
• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients

67

• Partitioning gradients across GPUs
• Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients

68

• Partitioning gradients across GPUs
• Reduce gradients on GPUs responsible for updating parameters

ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume

• Turning NLR 17.2B is powered by Stage 1 and Megatron

69

ZeRO Stage 3: Partitioning Parameters

• In data parallel training, all GPUs keep all parameters during training

70

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Conv1 Conv2

𝑊1

Conv1’

∆𝑊1

𝑊2

Conv2’

∆𝑊2

Loss

GPU1

Conv1 Conv2

𝑊1

Conv1’

∆𝑊1

𝑊2

Conv2’

∆𝑊2

Loss

GPU2

ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

71

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Conv1 Conv2

𝑊1

GPU1

Conv1 Conv2

𝑊2

GPU2

ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters during forward

72

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Conv1 Conv2

𝑊1 𝑊2

Loss

GPU1

Conv1 Conv2

𝑊1 𝑊2

Loss

GPU2

ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• Parameters are discarded right after use

73

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Conv1 Conv2

𝑊1

Loss

GPU1

Conv1 Conv2

𝑊2

Loss

GPU2

ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters again during backward

74

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Conv1 Conv2

𝑊1

Conv1’

∆𝑊1

𝑊2

Conv2’

∆𝑊2

Loss

GPU1

Conv1 Conv2

𝑊1

Conv1’

∆𝑊1

𝑊2

Conv2’

∆𝑊2

Loss

GPU2

ZeRO: Zero Redundancy Optimizer

• ZeRO has three different stages

• Progressive memory savings and communication volume

75

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

76

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1
	Slide 2: Recap: DNN Training Overview
	Slide 3: DNN Training Process
	Slide 4: DNN Training Process
	Slide 5: DNN Training Process
	Slide 6: How can we parallelize DNN training?
	Slide 7: Data Parallelism
	Slide 8: Data Parallelism: Parameter Server
	Slide 9: Inefficiency of Parameter Server
	Slide 10: Inefficiency of Parameter Server
	Slide 11: Different Ways to Perform All-Reduce
	Slide 12: Naïve All-Reduce
	Slide 13: Ring All-Reduce
	Slide 14: Ring All-Reduce
	Slide 15: Ring All-Reduce
	Slide 16: Ring All-Reduce
	Slide 17: Ring All-Reduce
	Slide 18: Ring All-Reduce
	Slide 19: Ring All-Reduce
	Slide 20: Tree All-Reduce
	Slide 21: Tree All-Reduce
	Slide 22: Butterfly Network
	Slide 23: Butterfly All-Reduce
	Slide 24: Comparing different All-Reduce Methods
	Slide 25: Ring v.s. Tree v.s. Parameter Server
	Slide 26: An Issue with Data Parallelism
	Slide 27: Large Model Training Challenges
	Slide 28: Large Model Training Challenges
	Slide 29: ZeRO: Zero Redundancy Optimizer
	Slide 30: Revisit: Stocastic Gradient Descent
	Slide 31: Adaptive Learning Rates (Adam)
	Slide 32: Understanding Memory Consumption
	Slide 33: Understanding Memory Consumption
	Slide 34: Understanding Memory Consumption
	Slide 35: Understanding Memory Consumption
	Slide 36: Understanding Memory Consumption
	Slide 37: Understanding Memory Consumption
	Slide 38: ZeRO-DP: ZeRO powered Data Parallelism
	Slide 39: ZeRO Stage 1: Partitioning Optimizer States
	Slide 40: ZeRO Stage 1: Partitioning Optimizer States
	Slide 41: ZeRO Stage 1: Partitioning Optimizer States
	Slide 42: ZeRO Stage 1: Partitioning Optimizer States
	Slide 43: ZeRO Stage 1: Partitioning Optimizer States
	Slide 44: ZeRO Stage 1: Partitioning Optimizer States
	Slide 45: ZeRO Stage 1: Partitioning Optimizer States
	Slide 46: ZeRO Stage 1: Partitioning Optimizer States
	Slide 47: ZeRO Stage 1: Partitioning Optimizer States
	Slide 48: ZeRO Stage 1: Partitioning Optimizer States
	Slide 49: ZeRO Stage 1: Partitioning Optimizer States
	Slide 50: ZeRO Stage 1: Partitioning Optimizer States
	Slide 51: ZeRO Stage 1: Partitioning Optimizer States
	Slide 52: ZeRO Stage 1: Partitioning Optimizer States
	Slide 53: ZeRO Stage 1: Partitioning Optimizer States
	Slide 54: ZeRO Stage 1: Partitioning Optimizer States
	Slide 55: ZeRO Stage 1: Partitioning Optimizer States
	Slide 56: ZeRO Stage 1: Partitioning Optimizer States
	Slide 57: ZeRO Stage 1: Partitioning Optimizer States
	Slide 58: ZeRO Stage 1: Partitioning Optimizer States
	Slide 59: ZeRO Stage 1: Partitioning Optimizer States
	Slide 60: ZeRO Stage 1: Partitioning Optimizer States
	Slide 61: ZeRO Stage 1: Partitioning Optimizer States
	Slide 62: ZeRO: Zero Redundancy Optimizer
	Slide 63: ZeRO Stage 2: Partitioning Gradients
	Slide 64: ZeRO Stage 2: Partitioning Gradients
	Slide 65: ZeRO Stage 2: Partitioning Gradients
	Slide 66: ZeRO Stage 2: Partitioning Gradients
	Slide 67: ZeRO Stage 2: Partitioning Gradients
	Slide 68: ZeRO Stage 2: Partitioning Gradients
	Slide 69: ZeRO: Zero Redundancy Optimizer
	Slide 70: ZeRO Stage 3: Partitioning Parameters
	Slide 71: ZeRO Stage 3: Partitioning Parameters
	Slide 72: ZeRO Stage 3: Partitioning Parameters
	Slide 73: ZeRO Stage 3: Partitioning Parameters
	Slide 74: ZeRO Stage 3: Partitioning Parameters
	Slide 75: ZeRO: Zero Redundancy Optimizer
	Slide 76: Acknowledgement
	Slide 77: Thanks

