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DNN Training Process "

* Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and
run calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error
for each trainable weight

3. Weight update: use the loss value to update model weights

Model inputs s Model prediction

+=3 Forward propagation

W Sofman
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DNN Training Process "

* Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and
run calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error
for each trainable weight

3. Weight update: use the loss value to update model weights

J{w) Gradient

Model inputs

Global cost minimum
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* Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and
run calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error
for each trainable weight

3. Weight update: use the loss value to update model weights

dL(w) B 14 - :all(W) Gradients of

Wi ==Ww; =Yy
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' Data Parallelism
S

ML Model
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Gradients
Aggregation

=

Training Dataset

w; == w; —yVL(w;) = w; — =

1. Partition training data into batches 2. Compute the gradients of 3. Aggregate gradients
each batch on a GPU across GPUs A
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Parameter Servers p'=p' +Ap
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Inefficiency of Parameter Server >

* Centralized communication: all workers communicate with
parameter servers for weights update; cannot scale to large numbers
of workers

* How can we decentralize communication in DNN training?

we (Bl 00 B0 0
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* Centralized communication: all workers communicate with
parameter servers for weights update; cannot scale to large numbers
of workers

* How can we decentralize communication in DNN training?

* All-Reduce: perform element-wise reduction across multiple devices

rank O rank 1 rank 2 rank 3 rank O rank 1 rank 2 rank 3

in0 in1 in2 in3 ‘ out out out out

out|i] = sum(Iln X [i])




' Different Ways to Perform All-Reduce Lt s 8l 8 =

* Naive All-Reduce
* Ring All-Reduce

 Tree All-Reduce

e Butterfly All-Reduce
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e Each worker can send its local gradients to all other workers
* |f we have N workers and each worker contains M parameters

e Overall communication: N * (N-1) * M parameters

* Issue: each worker communicates with all other workers; same scalability
issue as parameter server

A
A 4

17 11 1 9 5 13 23 14

A
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* Construct a ring of N workers, divide M parameters into N slices

 Step 1 (Aggregation): each worker send one slice (M/N parameters) to
the next worker on the ring; repeat N times

Worker A

Worker D Worker B

do d; dp dj by by by by

Worker C

Co Cq1 Cy C3
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* Construct a ring of N workers, divide M parameters into N slices

 Step 1 (Aggregation): each worker send one slice (M/N parameters) to
the next worker on the ring; repeat N times

Worker A

Worker D Worker B

b, b
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* Construct a ring of N workers, divide M parameters into N slices

 Step 1 (Aggregation): each worker send one slice (M/N parameters) to
the next worker on the ring; repeat N times

Worker A

Worker D Worker B
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* Construct a ring of N workers, divide M parameters into N slices

e Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next
worker on the ring; repeat N times

» After step 1, each worker has the aggregated version of M/N parameters

Worker A

ri=ai+bi+ci+di
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e Construct a ring of N workers, divide M parameters into N slices

e Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next
worker on the ring; repeat N times

e Step 2 (Broadcast): each worker send one slice of aggregated parameters to the
next worker; repeat N times

o I'y
/ rl 4\
14 I
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3

ri=ai+bi+ci+di 17
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e Construct a ring of N workers, divide M parameters into N slices

e Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next
worker on the ring; repeat N times

e Step 2 (Broadcast): each worker send one slice of aggregated parameters to the
next worker; repeat N times

/ rp ry Iz I3 4\
o Iy T I3 ' Iy T I3
I'o T 2 I3

1 r

ri=ai+bi+ci+di 18
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e Construct a ring of N workers, divide M parameters into N slices

» Step 1 (Aggregation): each worker send one slice (M/N parameters) to
the next worker on the ring; repeat N times

e Step 2 (Broadcast): each worker send one slice of aggregated
parameters to the next worker; repeat N times

e Overall communication: 2 * M * N parameters
* Aggregation: M * N parameters

e Broadcast: M * N parameters

19
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Tree All-Reduce

e Construct a tree of N workers;

C rsosxp

’ Shanghai Innovation Institute

» Step 1 (Aggregation): each worker sends M parameters to its parent;

repeat log(N) times

e Step 2 (Broadcast): each worker sends M parameters to its children;
Worker 6

repeat log(N) times

5
Worker 4 /

10

35

4

2

Worker 0

5

Worker 1

14
35

v\\A Worker 5

3% 6.&5

1

Worker 2

6

Worker 3

20
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e Construct a tree of N workers;

» Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat log(N) times

e Step 2 (Broadcast): each worker sends M parameters to its children;
repeat log(N) times

e Overall communication: 2 * N * M parameters
* Aggregation: M * N parameters

e Broadcast: M * N parameters

21
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MM

Butterfly Network
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* Repeat log(N) times:

1. Each worker sends M parameters  ° L OiEl 2 18 +0/IE 2 RS
to its target node in the butterfly 1 e U2 s e
network 2 2 3 0 1 2 3 «+0 1 2 3 4 5 6 7
] 3 2 3 0 1 2 3 «+0 1 2 3 4 5 6 7

2. Each worker aggregates gradients
4 4 5 4 5 6 7 01 2 3 4 5 6 7

locally
5 4 5 456?. 0 1 213 4 567
* Overall communication: N*M *log(N) & 67 " “ase7 / \‘o1234a5467
parameters 7 67 “4 5 6 7 ‘o0 1 23 4567
23
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Parameter Naive All- Ring All- Tree All- Butterfly All-

Server Reduce Reduce Reduce Reduce

e IxNxM N2xM 2xNxM 2xNxm N*Mx

communication log N

* Question: Ring All-Reduce is more efficient and scalable then Tree

A

All-Reduce and Parameter Server, why?



Ring v.s. Tree v.s. Parameter Server
Ring All-Reduce:
e Best latency
e Balanced workload across workers

e More scalable since each worker

Worker A

Ip L, Iz I3

sends 2*M parameters (independent to
the number of workers)

Worker D

Ip Iy Iz Iy

Worker B

Ip, Iy Iz Iy

Worker C 10

r=a;+b +¢+d; y w

Z N

4 7
Each worker sends M/N parameters 35‘// §5 3_V/ YS
per iteration; repeat for 2*N iterations 2 -r;\ 1 6\
5 1 6

Latency: M/N * (2*N) / bandwidth

Each worker sends M parameters per iteration;
repeat for 2*log(N) iterations

Latency: M * 2 * log(N) / bandwidth

Model
Replicas

Data

Lt s s 2R
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Parameter Servers p'=p'+Ap

DDDDDDDD@

S 68 &8 -
'

DO’ ‘
L0

All workers send M parameters to

parameter servers and receive M

parameters from servers

Latency: M * N / bandwidth
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An Issue with Data Parallelism

* Each GPU saves a replica of the
entire model

* Cannot train large models that
exceed GPU device memory

c EFBelEF Kk
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Gradients
Aggregation

P
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Turing
BertLarge GPT-2 172 NLG GPT-3
Parameters 0.32B 1.5B 17.2B 175B
Layers 24 48 78 96
Hidden Dimension 1024 1600 4256 12288
Relati
clative 1x 4.7x 54x 547x

Computation
Memory Footprint 5.12GB 24GB 275GB 2800GB




! g el 8 F bk

Large Model Training Challenges
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Turing
BertLarge GPT-2 172 NLG GPT-3
Parameters 0.32B 1.5B 17.2B 175B
Layers 24 48 78 96
Hidden Dimension 1024 1600 4256 12288
Relati
clative 1x 4.7x 54x 547x
Computation
Memory Footprint 5.12GB 24GB 275GB 2800GB
N Y
"
NVIDIA V100 GPU memory capacity: 16G/32G Out of Memory

NVIDIA A100 GPU memory capacity: 40G/80G




ZeRO: Zero Redundancy Optimizer

* Eliminating data redundancy in
data parallel training

* A widely used technique for
data parallel training of large

models @

M

g el 8 F bk
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“7| deepspeed

Gradients
Aggregation
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Fort=1toT Backward pass Forward pass
b 4 /...
Aw =n x5 z (1OSS(fW(xl,yl))) // compute derivative and update
i=1

= Aw [/ apply update

End

Adapted from Minjia Zhang, DeepSpeed Presentation



' Adaptive Learning Rates (Adam) LB EEZR

Fort=1toT
VtZBl*Vt—l—(l—/Bl)*gt

g=- (loss(fw(xu yJ)) st =Paxsi_1— (L— Ba) * g}
Vi

Aw adam( ) [
g Awt — —n\/m * gt
w-=Aw // apply updaf"-‘ | |
-- T g : Gradient at time t along w’
vy @ Exponential Average of gradients along w;

s8¢ : Exponential Average of squares of gradients along w;

81, B2 : Hyperparameters

4

[1] Kingma and Ba, “Adam: A Method for Stochastic Optimization”, 2014,
https://arxiv.org/abs/1412.6980
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[y
Transformer stack X L. [Transformer stack |
Data, o v oy Data, _
I = i
GPU, GPU,
A 16-layer transformer model =1 layer

Adapted from Minjia Zhang, DeepSpeed Presentation
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L |Transformer stack | [ || | - -, .. Jransformerstack |

Data, =

GPU, GPU,

| . .
Each cell = represents GPU memory used by its corresponding transformer layer .

Adapted from Minjia Zhang, DeepSpeed Presentation
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| Transformer stack | || | wp L [ [Transformer stack | i

Parts ™ | ooc

SENEEEEEEEEEEEEEEEEEnennnnuennns FP16 Para EENEEEEEEEESEEEREEEEEEeensnennnn FP16 Parameters

I () [
GPU, GPU,

* FP16 parameter

Adapted from Minjia Zhang, DeepSpeed Presentation
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w | L | Transformer stack | = i wp | . Transformerstack = |
Datao 0 1| G S ) G O | L 0 S 3 | O P A S | 5 T 0
FP16 Parame FP16 Parameters
EENEEEEEREENENEEEREEEEEEENEERNEE FP16 Gradie .-- ENGEERENERENETHESEEREnEEROEREEEnE FP16 Gradient
GPU, GPU,

* FP16 parameter
* FP16 Gradients

Adapted from Minjia Zhang, DeepSpeed Presentation



Data, *

Understanding Memory Consumption

-

Transformer stack |

FP16 Param
EnEENN NN R e RNEe FP16 Gradie
B R R R R R R R R RRRERR ' o2 Gradle
llllllIllllllwmlllllllllll. FP32 Variance
ANEEENNNENEEE R m O
llllllllllllllllllllllllllllllll FP32 Momentum
EESHNESSHESCSENENECENESSEEENEER
llllllllllllllllllllllllllllllll FP32 Parameters

FP16 parameter

FP16 Gradients

FP32 Optimizer States

- Gradients, Variance, Momentum, Parameters

Adapted from Minjia Zhang, DeepSpeed Presentation
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Transformer stack |

FP16 Parameters
0 0 ) ) 0 ) e ) N 0 O 0 FP16 Gradient
maEammEEaEsraEsEAREEEENAREEE ol CrC
nulnnull-nllnﬁ:mu-l-nll-llll FP32 Variance
0 O I 0 O O D
IEEEEENESESEEEREEEEEEaEEEREEEEEEE FP32 Momentum
SN NN RSN
IEENEENEEEENERREEsEREeneRnEEsEne FP32 Parameters




Understanding Memory Consumption

....................... =y
FP18 Gradien

BaszssassasmssssmssEsmssasEEEERE o) .o A I
=============§F§E===========-FP32Varlance
T TN EE YT TR iR BOH W RN E
ANENNE NSNS NN SRR R nFP32Momentum
SEEENEEEEENE NSNS
EEEEENEEEENENEEENEEEEEEnnnEenaE® FP32 Parameters

FP16 parameter. 2M bytes

FP16 Gradients: 2M bytes

FP32 Optimizer States . 16M bytes
- Gradients, Variance, Momentum, Parameters

M = number of parameters in the model

Adapted from Minjia Zhang, DeepSpeed Presentation
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Transformer stack

- e D Y — T~ 4 e we e mb e we

FP16 Parameters
0 00 1 G a1 Y 0 B 11 R £ b ) 0 FP16 Gradient
INEEEEEEEEEEEEEE e nennnnns FP32 Gradient
Sasassasmeaseipritiasssassasasas FP32 Varlance
01 I O D O O 100 20 O D
IENEEEEEESEEEREEEEEEEEEEEnEEeans FP32 Momentum
SNSRI E
SEENEENEEGENeRREEsERTEneenEEsuEne FP32 Parameters

Example 1B parameter model -> 20GB/GPU

Memory consumption doesn’t include:
e Input batch + activations
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ZeRO-DP: ZeRO powered Data Parallelism g L& el TR

Shanghai Innovation Institute

e ZeRO removes the redundancy across data parallel process
* Stage 1: partitioning optimizer states
e Stage 2: partitioning gradients

* Stage 3: partitioning parameters
EPU, EPY; BPUy.;

Baseline

Pos

p

O5+B

OS+g+p

Parameters Gradients Optimizer States
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Activations Activations

Transformer stack Transformer stack
[RiEg - UECOCDOBO0EEEE60 Sae = (5500 0men0ERaas,

* ZeRO Stage 1
* Partitions optimizer states across GPUs

Adapted from Minjia Zhang, DeepSpeed Presentation
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Activations
Transformer stack

——————————————

am Activations
Transformer stack

* ZeRO Stage 1
* Partitions optimizer states across GPUs
* Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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EuEm Activations
Transformer stack

* ZeRO Stage 1
* Partitions optimizer states across GPUs
* Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation



ZeRO Stage 1: Partitioning Optimizer States Lo E 2R

Shanghai Innovation Institute

EEEEEEEe Activations e EEREsEaaaT 1 | Activations
Data, = [FLSILE] Trangformer stack, | Dz = (L] Trangformer stack
saagzsnBE [ty | |
GPU, GPU,

* ZeRO Stage 1
* Partitions optimizer states across GPUs
* Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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----.---;---Mations
w [ U] 1 H | [Transformer stack |

Data, ™ SEETEWEE

...- ansanenenseswdedations
- | '_[_4 _4 | wTransformer stack |

----------

IIII
GPU, GPU,

* ZeRO Stage 1
* Partitions optimizer states across GPUs
* Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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awmmewnen s nsAGIVaHONaE = wame e mam e s s sAGivalionae

Data, = HOGEEIHOETE 1O

EEEE
GPU, GPU,

* ZeRO Stage 1
* Partitions optimizer states across GPUs
* Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation



' ZeRO Stage 1: Partitioning Optimizer States * LB el g Z R

Shanghai Innovation Institute

u-l--l-nullnMﬁﬂ&uuuuallllll

uulluu-l-ul-mﬂﬁﬁtuu--lullll

. F | IIII
Data, = LI msemrsee o

llll
GPU, GPU;,

* ZeRO Stage 1
* Partitions optimizer states across GPUs
* Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss Loss

sennnnnnnnnnAGihElionSsennnnnnenn |

e, - B88880080085808015

EEEE snnnnennnennACiVaioRSpennnnnnnen |

EREN ~ BIDERITECTEER000 | -

GPU, GPU,

* ZeRO Stage 1
* Partitions optimizer states across GPUs
* Run Forward across the transformer blocks

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss Loss
-I-I-nnql--lmaﬂ%-llunnnllll i seesnssnsnsnedCidElitiSnsssnancnn
Datao o [ H Trgnﬁfoqmer stack| 1 1B 'Lli = )_ JL I }_Tr‘;_angfqngr !§ta_ck_‘ I ‘r‘ I o
lllllIllllllllllllllllllllllll.. & T DO T O 0 2 &
GPU, GPU,

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

* Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss Loss
snsssnansnend@liVeliondnsssnnnnnen sesnnsssnsnsvdeii@iefdssanunnnnne [
et 8 SR | | | [t e em——

Data, = BEUEOTOETEEL0E g@ Data. L s &';}
IIIIIIIIIIIIIIlIIlIIIIIIIIIIII:: @ I-----I----.-.------..--------:: @

GPU, GPU,

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

* Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss Loss
sasnnsansnnndelieistnnsnnnnnnnn | ... snnnnnnnennnnidiflititennnnnnnnnn |
Datay = (I Momsrssse . . |8 s = (1) Tpomriae | . |2
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEENEEENEENEEEEEEN |

EEEN I . .... | | | |
GPU, GPU,

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

* Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss
ssnnnnnnnnnndGiMeieRS sannnnnnnnn

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

* Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation

paa;

Shanghai Innovation Institute

Loss
ssnnnnnnnnnnnhéiifigitnnnnnnnnnnn

g engemersask. |2

GPU,
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Loss Loss
snnnnsensnnsrididigienannnnnnnnnns | .... snsenennnnnaniiifioftnnnnnnnnnnn |
M Transformer stack = [ _Transformer stack n
Datzg = HEEEREIETEEE RS ﬁ N od | i Q] u

B
GPU, GPU;,

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

* Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss Loss

sssnnsnensnenbiiEieiansnnnnnnnns

Transformer stack ‘ ]

Dafsy ™ ST S S eE e

snnnnnnnnennnbdiifioftnnnnnnnnnnn
.... 0 Transformer stagk) L ‘.

GPU, GPU;,

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

* Backward propagation to generate FP16 gradients

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss Loss
seennnnnneen vl ssenennnnnn T L L LT T ey eyy- e
Transformer stack SEEE Transformer stack
Data‘............... -—.:;—;., ...... Bt L L .
0 EEEEEEEEENEEENEEEEEEEEEEEEEEEEEN SN

[ ]|
CSFJLJU (3F’LJ1

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

e Backward propagation to generate FP16 gradients and All-Reduce to average

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss Loss
ansnsnnnnnnnwddibcioRSsunnnennnnn | ...- snnnnnnnnnnnpbeliiifitibnnennnnnunn
Dat ~9 1 1111 Transformer stack | |~ | | {] Nats ~g 11 1 11 Transformer stack = = | | tl
aﬂ EEEEEEEEEEEEEEEENEEEEEEEEEEEEEEE | | T EEEEEEEEEEEEEEEEEEEEEE NN
ENEEEEEEEEEEEEEN .... EEEEEEEEEEEEEEEn

GPU, GPU,

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

e Backward propagation to generate FP16 gradients and All-Reduce to average

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss Loss
snnnnnnnnnnnieliéieitnnnnnnnnnnn | | sepnnnennnnnphtlifititnnsnnnnnnnn
Data, e I 1T 1T 11 Transformer stack |/ <] .- _____ Trangformer stack . _ | <]
0 S NEEENEEENEEE S EEEEEEEEEE NN
SesiessEaasesses ENEE SRiBSEangREsRas
GPU, GPU,

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

e Backward propagation to generate FP16 gradients and All-Reduce to average
e Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation




ZeRO Stage 1: Partitioning Optimizer States

Loss
snnnnnnnn s diSieitnnnnnnnnnnn
s - BRRER Transformer stack . _ |
T SESIIENSESRIRISERRIRIRRRARIRERS
SEESSEEESEEEEEES EEENENEEEENENEEE
SRISSSSESSIRSEPU. GHASIITIIeIeent

ZeRO Stage 1

Partitions optimizer states across GPUs

Run Forward across the transformer blocks

Backward propagation to generate FP16 gradients and All-Reduce to average
Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation
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Loss
|

|




ZeRO Stage 1: Partitioning Optimizer States

Data, =

Loss
L LT T ety ——— | T snnnnnnnnnnnvbdiiEiditnnnnnnnnnnn
L B | Transformer stack = =~ = | .. B : ~“4 1 11 11 Transformer stack = |
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE . T EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
0 o o o . PR NN EEEEEEEE
EEEEEEEEEEEEEEEE BEER EEEEEEEEEEEE RN
SEiEiiiinasisas b
sasasansansasdab’U, €
EEEEEEEEEEEEEEEE SEEEEEEEEEEEEEEE

ZeRO Stage 1

Partitions optimizer states across GPUs

Run Forward across the transformer blocks

Backward propagation to generate FP16 gradients and All-Reduce to average
Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation
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ZeRO Stage 1: Partitioning Optimizer States Lo e

Loss Loss
snnnnnnennnaniiiddioRdnnnnnnnnnnn B 0 sennnnunnnnnnidiificitnnnnnnnnnnn
Data “q T TTTI Transformer stack . _ | ‘= ] N = RERRA Transformer stack_ _ _ _ ‘.

0 e T T T T TR Tl L LTt =
EEEEEEEEEEEEEEEEE RN .... IIIIIIIIIIII-III================
================ EEEEEEEEEEEEEEEN
HEEHEHG, o/ i

* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

* Backward propagation to generate FP16 gradients and All-Reduce to average
e Update the FP32 weights with ADAM optimizer

Adapted from Minjia Zhang, DeepSpeed Presentation




Loss

snsnnnnnnsnasdeihelionssnnnnnnnnnn
Transformer stack

Data, =

D,

* ZeRO Stage 1
* Partitions optimizer states across GPUs
* Run Forward across the transformer blocks

ZeRO Stage 1: Partitioning Optimizer States

A
Datas

g el 8 F bk

Shanghai Innovation Institute

Loss

snnnnnnnnnnnnibii@igitnnnnnnnnnnn | [JJ
Transformer stack ﬁ

Gy aeaasasass

e Backward propagation to generate FP16 gradients and All-Reduce to average

e Update the FP32 weights with ADAM optimizer
e Update the FP16 weights

Adapted from Minjia Zhang, DeepSpeed Presentation
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* ZeRO Stage 1

* Partitions optimizer states across GPUs

* Run Forward across the transformer blocks

e Backward propagation to generate FP16 gradients and All-Reduce to average
e Update the FP32 weights with ADAM optimizer

e Update the FP16 weights

Adapted from Minjia Zhang, DeepSpeed Presentation
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ZeRO Stage 1
Partitions optimizer states across GPUs
Run Forward across the transformer blocks
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Transformer stack

---------------

Backward propagation to generate FP16 gradients and All-Reduce to average

Update the FP32 weights with ADAM optimizer
Update the FP16 weights

All Gather the FP16 weights to complete the iteration
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* Progressive memory savings and communication volume

Memory Consumption Comm
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GPU, GPU,

* Partitioning gradients across GPUs
* The forward process remains the same as stage 1
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GPU, GPU,
AllIReduce

* Partitioning gradients across GPUs
* Perform All-Reduce right after back propagation of each layer
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GPU, GPU,

AllReduce

* Partitioning gradients across GPUs
* Only one GPU keeps the gradients after All-Reduce
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GPU, GPU,

AllReduce

* Partitioning gradients across GPUs
* Reduce gradients on GPUs responsible for updating parameters
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GPU, GPU,

AllIReduce

* Partitioning gradients across GPUs
* Reduce gradients on GPUs responsible for updating parameters
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* Partitioning gradients across GPUs
* Reduce gradients on GPUs responsible for updating parameters
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ZeRO: Zero Redundancy Optimizer

* Progressive memory savings and communication volume

* Turning NLR 17.2B is powered by Stage 1 and Megatron
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* In data parallel training, all GPUs keep all parameters during training
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* In ZeRO, model parameters are partitioned across GPUs
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* In ZeRO, model parameters are partitioned across GPUs

* GPUs broadcast their parameters during forward
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* In ZeRO, model parameters are partitioned across GPUs

* Parameters are discarded right after use
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* In ZeRO, model parameters are partitioned across GPUs

* GPUs broadcast their parameters again during backward
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e 7eR0O has three different stages

* Progressive memory savings and communication volume
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