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Recap: DNN Training Overview
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DNN Training Process

• Train ML models through many iterations of 3 stages

1. Forward propagation: apply model to a batch of input samples and
run calculation through operators to produce a prediction

2. Backward propagation: run the model in reverse to produce error

for each trainable weight

3. Weight update: use the loss value to update model weights
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How can we parallelize DNN training?
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Data Parallelism 
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1. Partition training data into batches 2. Compute the gradients of
each batch on a GPU

3. Aggregate gradients
across GPUs
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Data Parallelism: Parameter Server
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Inefficiency of Parameter Server
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• Centralized communication: all workers communicate with

parameter servers for weights update; cannot scale to large numbers
of workers

• How can we decentralize communication in DNN training?



Inefficiency of Parameter Server
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• Centralized communication: all workers communicate with

parameter servers for weights update; cannot scale to large numbers
of workers

• How can we decentralize communication in DNN training?

• All-Reduce: perform element-wise reduction across multiple devices
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Different Ways to Perform All-Reduce
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• Naïve All-Reduce

• Ring All-Reduce

• Tree All-Reduce

• Butterfly All-Reduce



Naïve All-Reduce

• Each worker can send its local gradients to all other workers

• If we have N workers and each worker contains M parameters

• Overall communication: N * (N-1) * M parameters

• Issue: each worker communicates with all other workers; same scalability

issue as parameter server
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Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to

the next worker on the ring; repeat N times
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Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to

the next worker on the ring; repeat N times
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Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next
worker on the ring; repeat N times

• After step 1, each worker has the aggregated version of M/N parameters

16

r1

Worker A

r2

Worker B

r3

Worker C

r0

Worker D

r1

r2r3

r0

𝑟𝑖 = 𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖



Ring All-Reduce

• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next
worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated parameters to the
next worker; repeat N times
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Ring All-Reduce
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• Construct a ring of N workers, divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N parameters) to

the next worker on the ring; repeat N times

• Step 2 (Broadcast): each worker send one slice of aggregated

parameters to the next worker; repeat N times

• Overall communication: 2 * M * N parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters



Tree All-Reduce
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• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children;

repeat log(N) times
10
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Tree All-Reduce
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• Construct a tree of N workers;

• Step 1 (Aggregation): each worker sends M parameters to its parent;

repeat log(N) times

• Step 2 (Broadcast): each worker sends M parameters to its children;

repeat log(N) times

• Overall communication: 2 * N * M parameters

• Aggregation: M * N parameters

• Broadcast: M * N parameters



Butterfly Network
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Butterfly All-Reduce

• Repeat log(N) times:

1. Each worker sends M parameters 

to its target node in the butterfly 

network

2. Each worker aggregates gradients 

locally

• Overall communication: N * M * log(N) 

parameters 
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Comparing different All-Reduce Methods

• Question: Ring All-Reduce is more efficient and scalable then Tree

All-Reduce and Parameter Server, why?
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Ring v.s. Tree v.s. Parameter Server

Each worker sends M/N parameters

per iteration; repeat for 2*N iterations

Latency: M/N * (2*N) / bandwidth
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Ring All-Reduce:

• Best latency

• Balanced workload across workers

• More scalable since each worker

sends 2*M parameters (independent to 
the number of workers)

Each worker sends M parameters per iteration;

repeat for 2*log(N) iterations

Latency: M * 2 * log(N) / bandwidth

All workers send M parameters to

parameter servers and receive M

parameters from servers

Latency: M * N / bandwidth



An Issue with Data Parallelism

• Each GPU saves a replica of the

entire model

• Cannot train large models that

exceed GPU device memory
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Large Model Training Challenges
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BertLarge GPT-2
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Hidden Dimension 1024 1600 4256 12288

Relative 
Computation

1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB
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BertLarge GPT-2
Turing

17.2 NLG 
GPT-3

Parameters 0.32B 1.5B 17.2B 175B

Layers 24 48 78 96

Hidden Dimension 1024 1600 4256 12288

Relative 
Computation

1x 4.7x 54x 547x

Memory Footprint 5.12GB 24GB 275GB 2800GB

NVIDIA V100 GPU memory capacity: 16G/32G 
NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory



ZeRO: Zero Redundancy Optimizer

• Eliminating data redundancy in

data parallel training

• A widely used technique for

data parallel training of large

models
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Revisit: Stocastic Gradient Descent
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For t = 1 to T

// compute derivative and update

w −= ∆w // apply update

End 

Backward pass Forward pass 

Adapted from Minjia Zhang, DeepSpeed Presentation



Adaptive Learning Rates (Adam)
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Understanding Memory Consumption
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A 16-layer transformer model      = 1 layer

Adapted from Minjia Zhang, DeepSpeed Presentation 



Understanding Memory Consumption
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Each cell     represents GPU memory used by its corresponding transformer layer 

Adapted from Minjia Zhang, DeepSpeed Presentation 



Understanding Memory Consumption
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• FP16 parameter 

Adapted from Minjia Zhang, DeepSpeed Presentation 



Understanding Memory Consumption
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• FP16 parameter 
• FP16 Gradients 

Adapted from Minjia Zhang, DeepSpeed Presentation 



Understanding Memory Consumption
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• FP16 parameter 
• FP16 Gradients
• FP32 Optimizer States 

· Gradients, Variance, Momentum, Parameters 

Adapted from Minjia Zhang, DeepSpeed Presentation 



Understanding Memory Consumption
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• FP16 parameter：2M bytes
• FP16 Gradients：2M bytes
• FP32 Optimizer States ：16M bytes

· Gradients, Variance, Momentum, Parameters 

M = number of parameters in the model

Adapted from Minjia Zhang, DeepSpeed Presentation 

Example 1B parameter model -> 20GB/GPU 

Memory consumption doesn’t include: 
• Input batch + activations 



ZeRO-DP: ZeRO powered Data Parallelism

• ZeRO removes the redundancy across data parallel process

• Stage 1: partitioning optimizer states

• Stage 2: partitioning gradients

• Stage 3: partitioning parameters
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ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs 

Adapted from Minjia Zhang, DeepSpeed Presentation 



ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks 

Adapted from Minjia Zhang, DeepSpeed Presentation 
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ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
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• Backward propagation to generate FP16 gradients 

Adapted from Minjia Zhang, DeepSpeed Presentation 
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ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients 

Adapted from Minjia Zhang, DeepSpeed Presentation 



ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average 

Adapted from Minjia Zhang, DeepSpeed Presentation 



ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average 

Adapted from Minjia Zhang, DeepSpeed Presentation 



ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average 
• Update the FP32 weights with ADAM optimizer 

Adapted from Minjia Zhang, DeepSpeed Presentation 



ZeRO Stage 1: Partitioning Optimizer States
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• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average 
• Update the FP32 weights with ADAM optimizer 

Adapted from Minjia Zhang, DeepSpeed Presentation 
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
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ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average 
• Update the FP32 weights with ADAM optimizer 

Adapted from Minjia Zhang, DeepSpeed Presentation 



ZeRO Stage 1: Partitioning Optimizer States

59

• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average 
• Update the FP32 weights with ADAM optimizer
• Update the FP16 weights 

Adapted from Minjia Zhang, DeepSpeed Presentation 



ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average 
• Update the FP32 weights with ADAM optimizer
• Update the FP16 weights 
•

Adapted from Minjia Zhang, DeepSpeed Presentation 



ZeRO Stage 1: Partitioning Optimizer States
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• ZeRO Stage 1
• Partitions optimizer states across GPUs
• Run Forward across the transformer blocks
• Backward propagation to generate FP16 gradients and All-Reduce to average 
• Update the FP32 weights with ADAM optimizer
• Update the FP16 weights 
• All Gather the FP16 weights to complete the iteration 



ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume
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ZeRO Stage 2: Partitioning Gradients
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• Partitioning gradients across GPUs
• The forward process remains the same as stage 1 



ZeRO Stage 2: Partitioning Gradients
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• Partitioning gradients across GPUs
• Perform All-Reduce right after back propagation of each layer 



ZeRO Stage 2: Partitioning Gradients

65

• Partitioning gradients across GPUs
• Only one GPU keeps the gradients after All-Reduce 



ZeRO Stage 2: Partitioning Gradients
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• Partitioning gradients across GPUs
• Reduce gradients on GPUs responsible for updating parameters 



ZeRO Stage 2: Partitioning Gradients
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• Partitioning gradients across GPUs
• Reduce gradients on GPUs responsible for updating parameters 



ZeRO Stage 2: Partitioning Gradients
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• Partitioning gradients across GPUs
• Reduce gradients on GPUs responsible for updating parameters 



ZeRO: Zero Redundancy Optimizer

• Progressive memory savings and communication volume

• Turning NLR 17.2B is powered by Stage 1 and Megatron
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ZeRO Stage 3: Partitioning Parameters

• In data parallel training, all GPUs keep all parameters during training

70

GPU 1

GPU 2

GPU N

…

Gradients 
Aggregation 

Conv1 Conv2

𝑊1

Conv1’

∆𝑊1

𝑊2

Conv2’

∆𝑊2

Loss

GPU1

Conv1 Conv2

𝑊1

Conv1’

∆𝑊1

𝑊2

Conv2’

∆𝑊2

Loss

GPU2



ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters during forward
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• Parameters are discarded right after use
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ZeRO Stage 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters again during backward
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ZeRO: Zero Redundancy Optimizer

• ZeRO has three different stages

• Progressive memory savings and communication volume
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