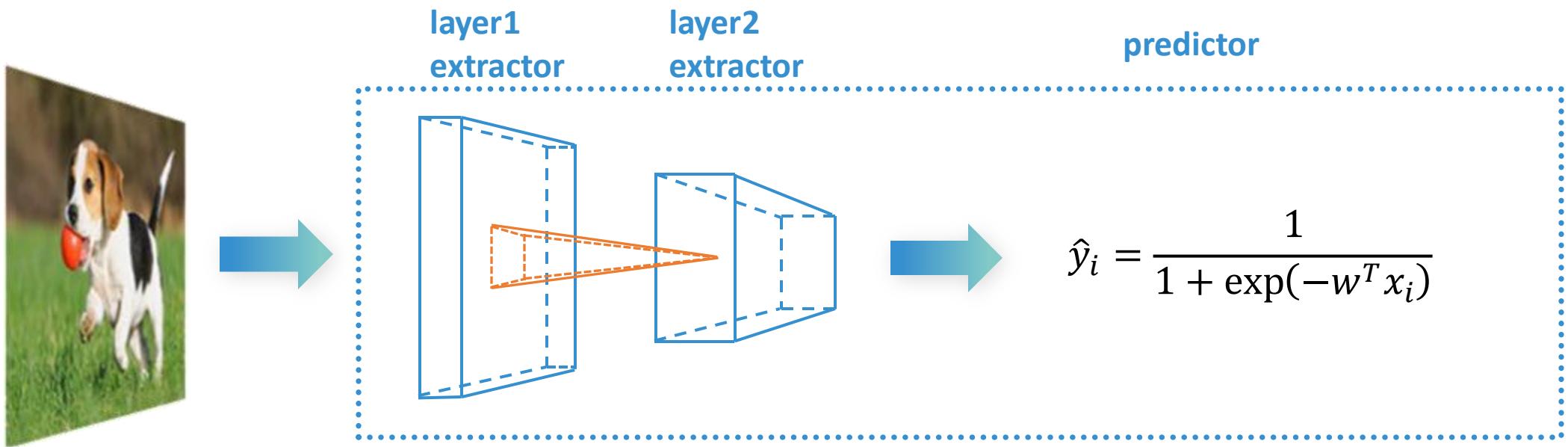

System for Artificial Intelligence Parallelization and Training I

Siyuan Feng
Shanghai Innovation Institute

Recap: DNN Training Overview



Objective

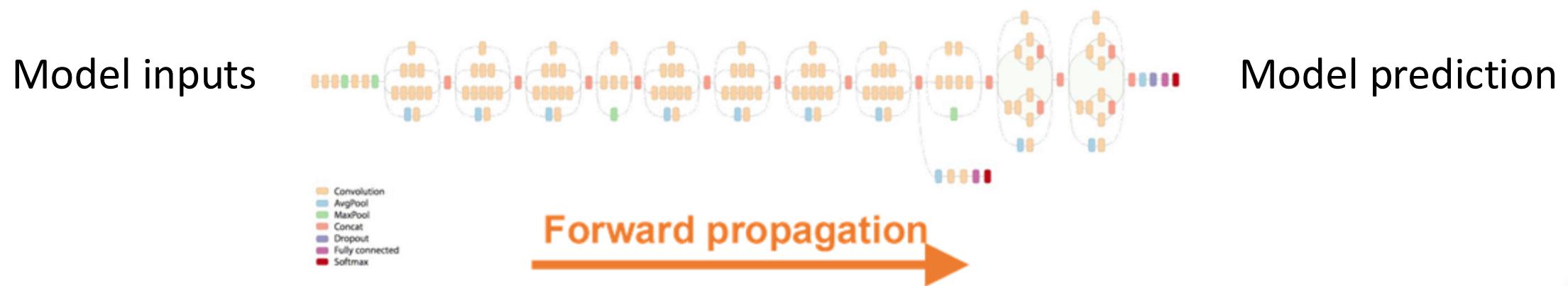
$$L(w) = \sum_{i=1}^n l(y_i, \hat{y}_i) + \lambda ||w||^2$$

Training

$$w \leftarrow w - \eta \nabla_w L(w)$$

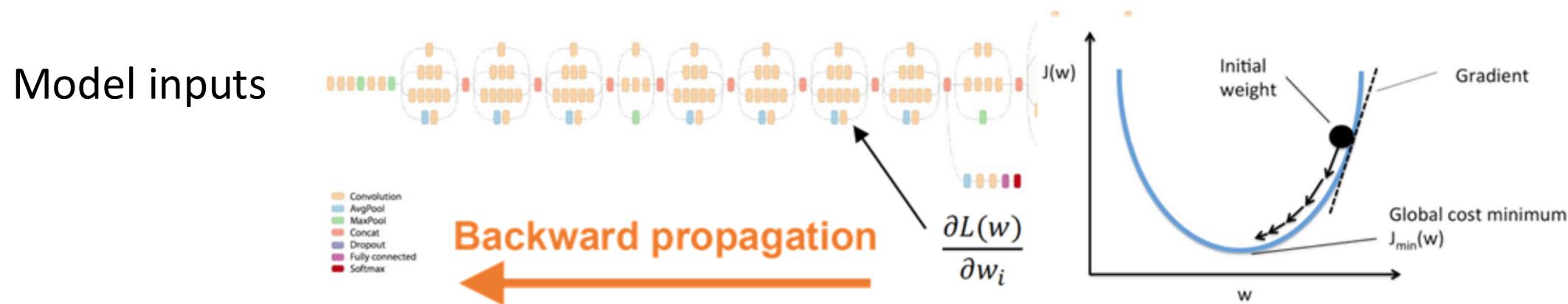
DNN Training Process

- Train ML models through many iterations of 3 stages
 - 1. Forward propagation:** apply model to a batch of input samples and run calculation through operators to produce a prediction
 - 2. Backward propagation:** run the model in reverse to produce error for each trainable weight
 - 3. Weight update:** use the loss value to update model weights



DNN Training Process

- Train ML models through many iterations of 3 stages
 1. **Forward propagation:** apply model to a batch of input samples and run calculation through operators to produce a prediction
 2. **Backward propagation:** run the model in reverse to produce error for each trainable weight
 3. **Weight update:** use the loss value to update model weights



- Train ML models through many iterations of 3 stages
 1. **Forward propagation:** apply model to a batch of input samples and run calculation through operators to produce a prediction
 2. **Backward propagation:** run the model in reverse to produce error for each trainable weight
 3. **Weight update:** use the loss value to update model weights

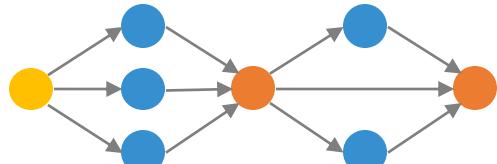
$$w_i := w_i - \gamma \frac{\partial L(w)}{\partial w_i} = w_i - \frac{\gamma}{n} \sum_{j=1}^n \frac{\partial l_i(w)}{\partial w_i}$$

Gradients of individual samples

How can we parallelize DNN training?

$$w_i := w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n} \sum_{j=1}^n \nabla L_j(w_i)$$

Data Parallelism

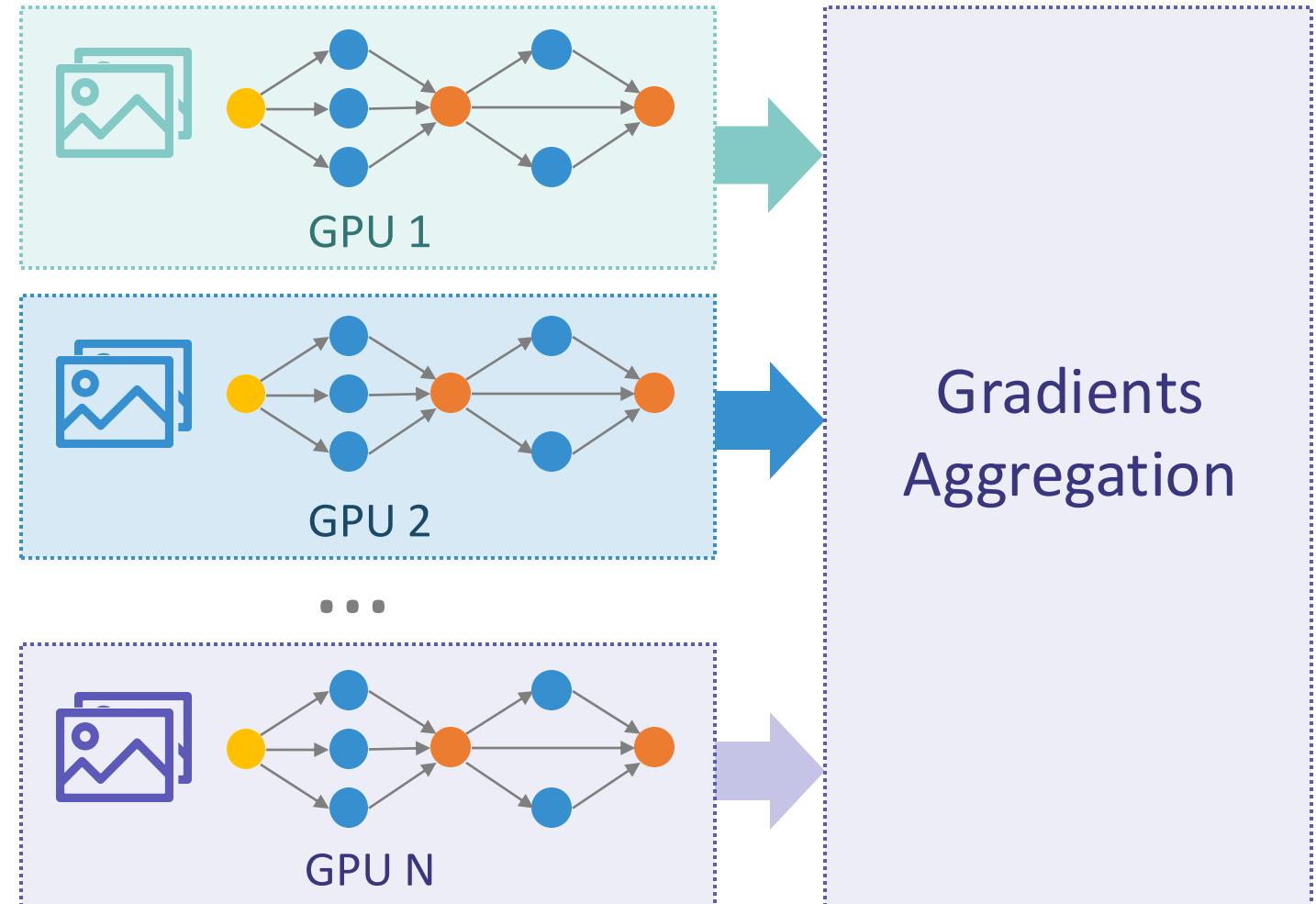


ML Model

Training Dataset

$$w_i := w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n} \sum_{j=1}^n \nabla L_j(w_i)$$

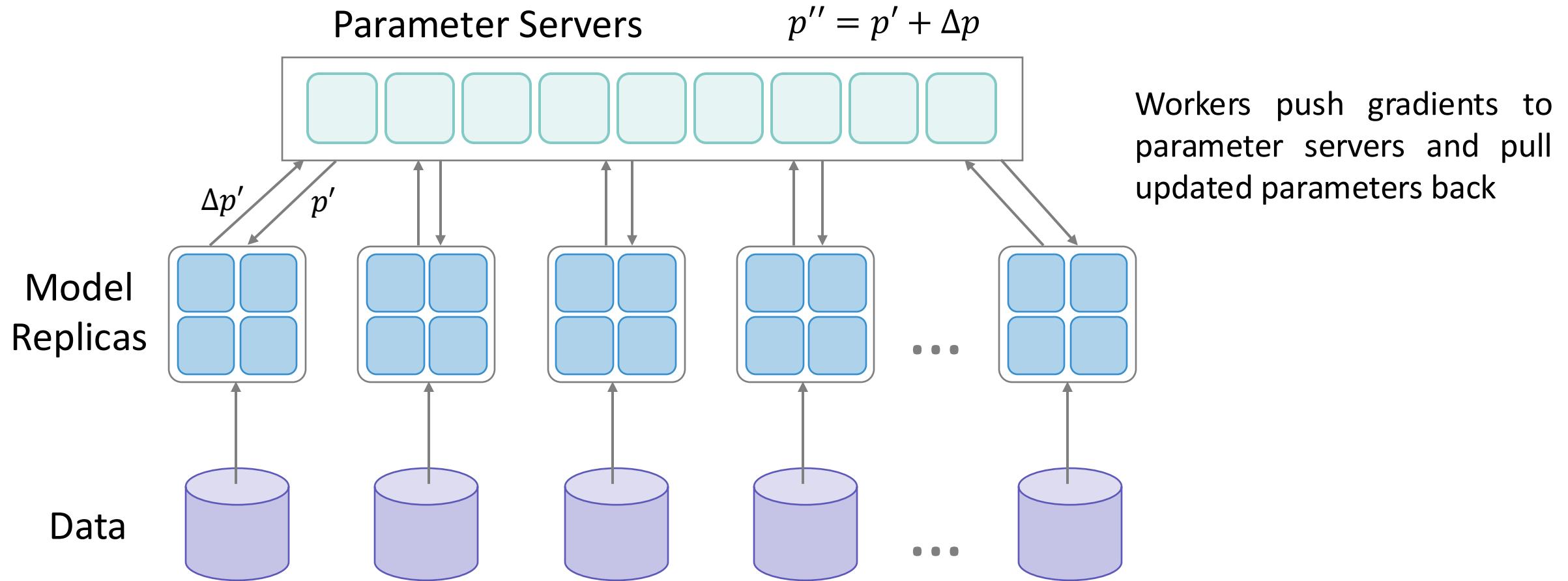
1. Partition training data into batches



2. Compute the gradients of each batch on a GPU

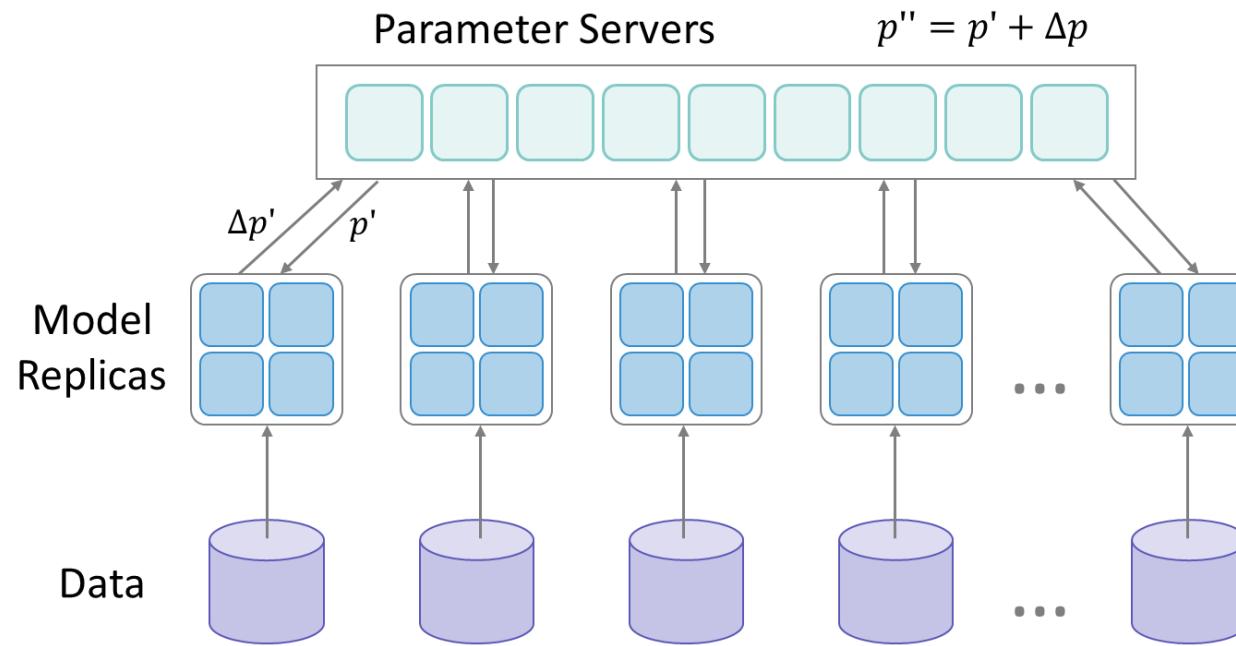
3. Aggregate gradients across GPUs

Data Parallelism: Parameter Server



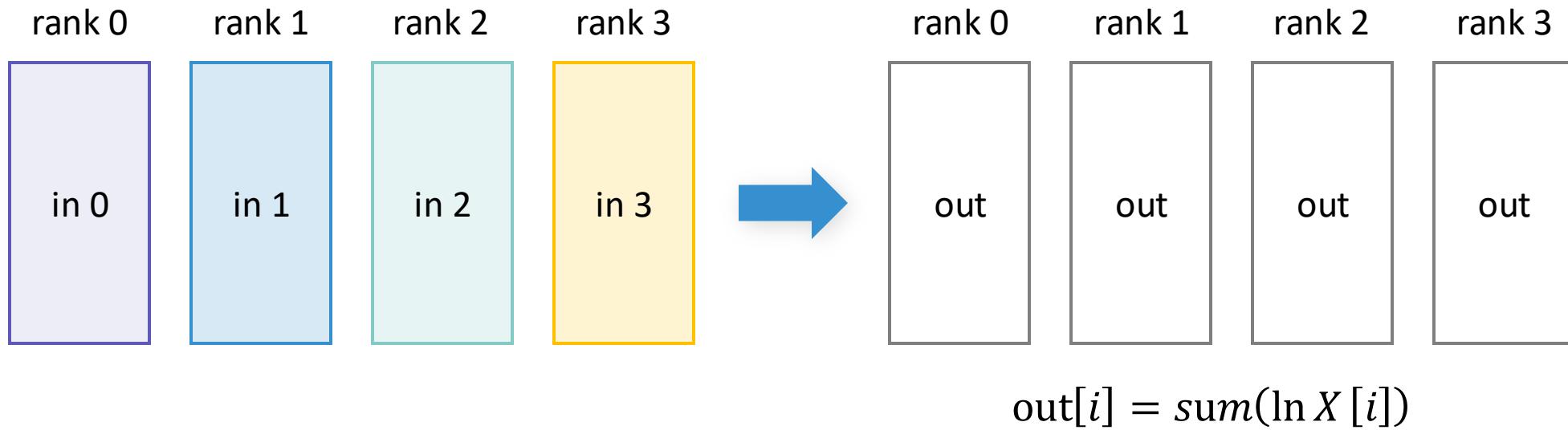
Inefficiency of Parameter Server

- **Centralized communication:** all workers communicate with parameter servers for weights update; cannot scale to large numbers of workers
- How can we decentralize communication in DNN training?



Inefficiency of Parameter Server

- **Centralized communication:** all workers communicate with parameter servers for weights update; cannot scale to large numbers of workers
- How can we decentralize communication in DNN training?
- **All-Reduce:** perform element-wise reduction across multiple devices

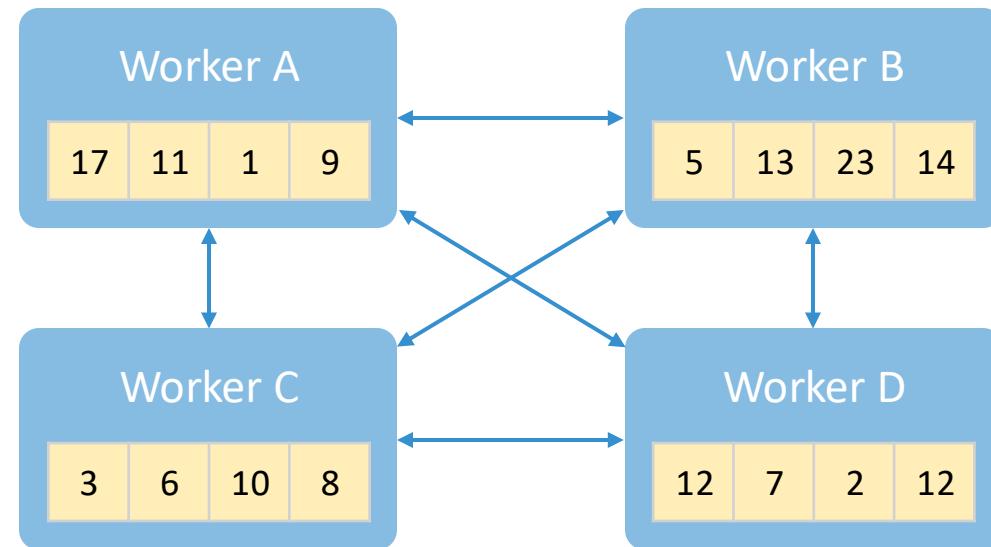


Different Ways to Perform All-Reduce

- Naïve All-Reduce
- Ring All-Reduce
- Tree All-Reduce
- Butterfly All-Reduce

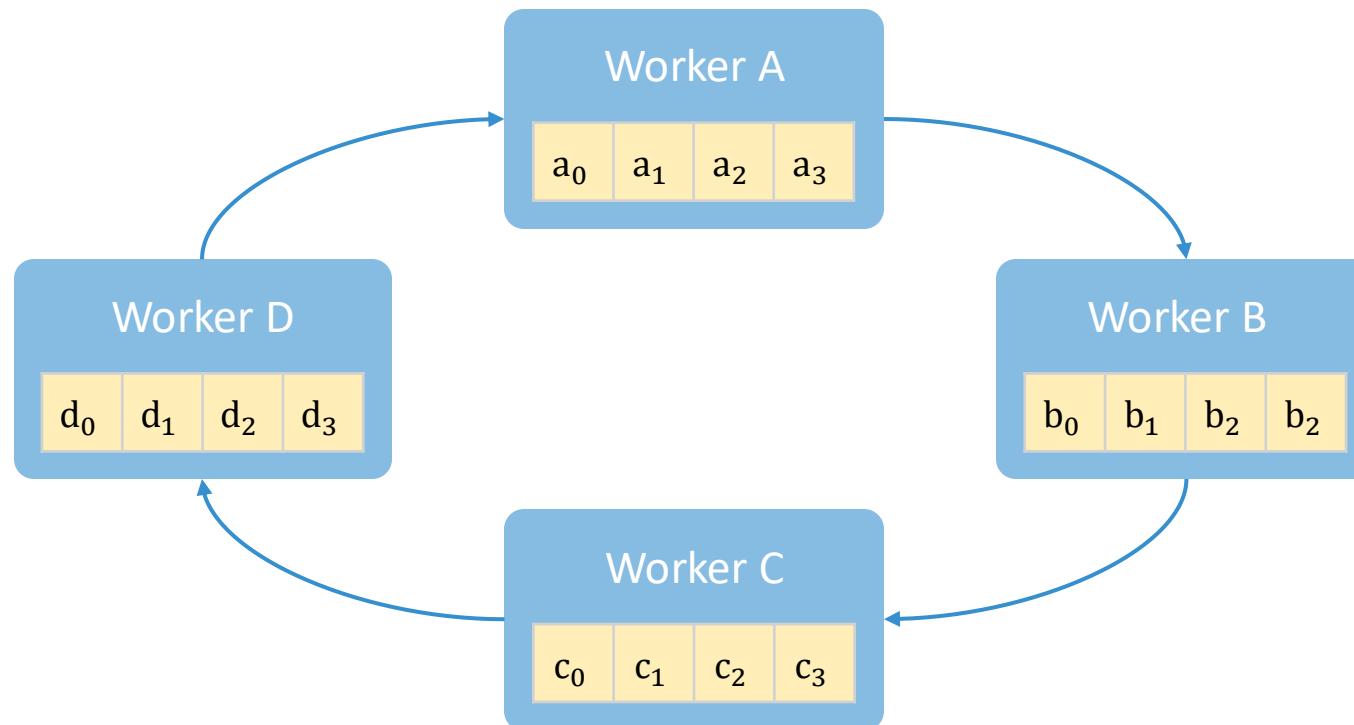
Naïve All-Reduce

- Each worker can send its local gradients to all other workers
- If we have N workers and each worker contains M parameters
- Overall communication: $N * (N-1) * M$ parameters
- **Issue:** each worker communicates with all other workers; same scalability issue as parameter server



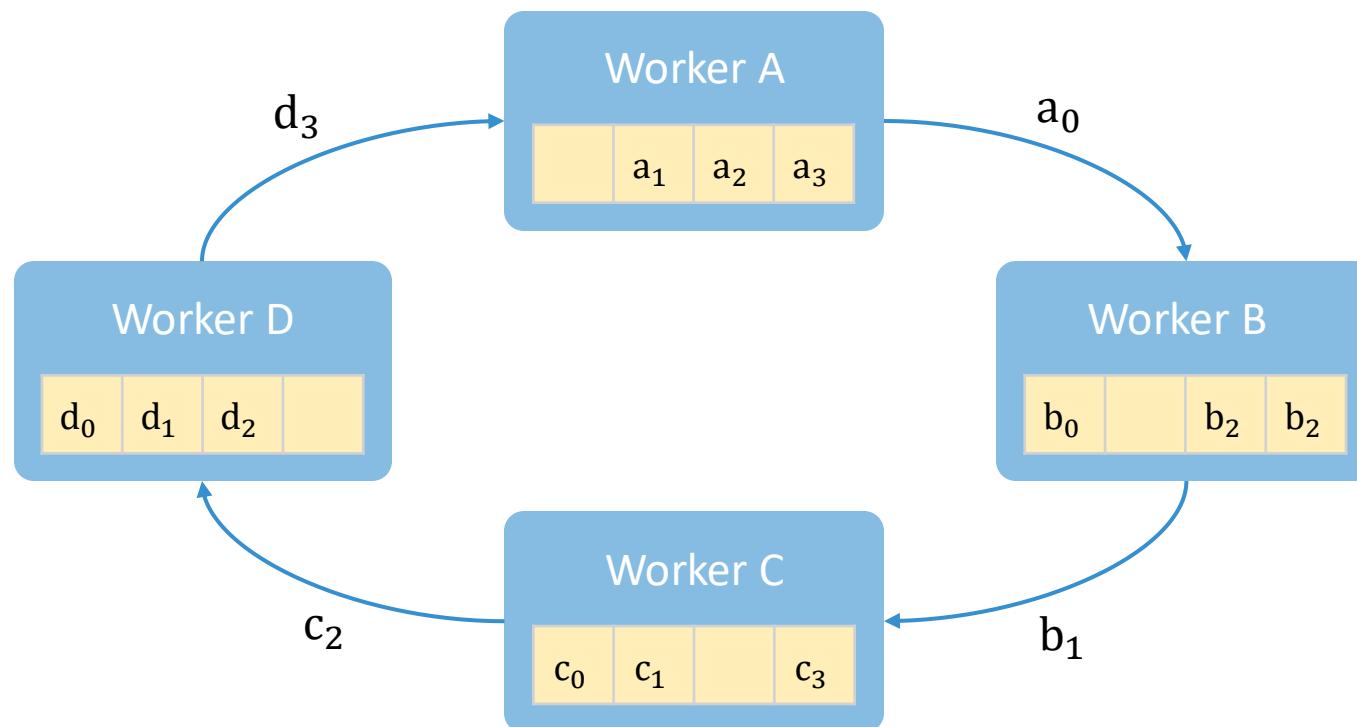
Ring All-Reduce

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times



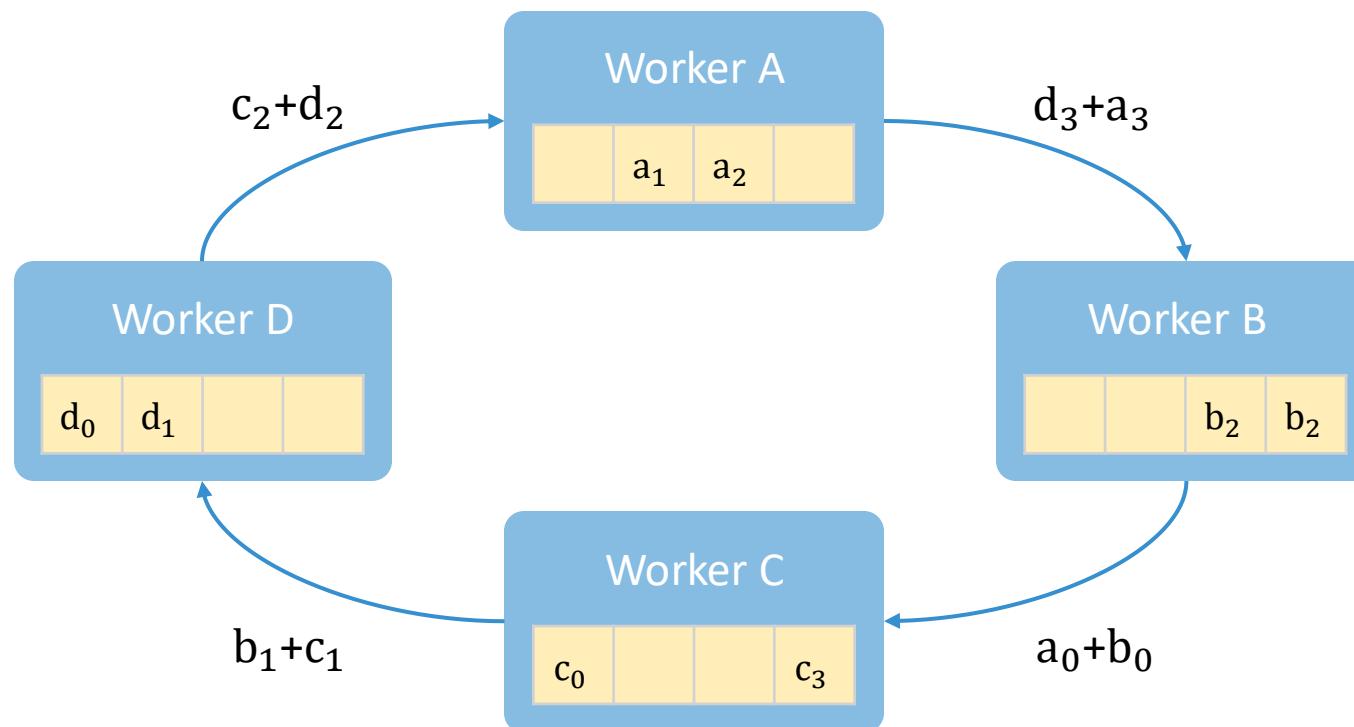
Ring All-Reduce

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times



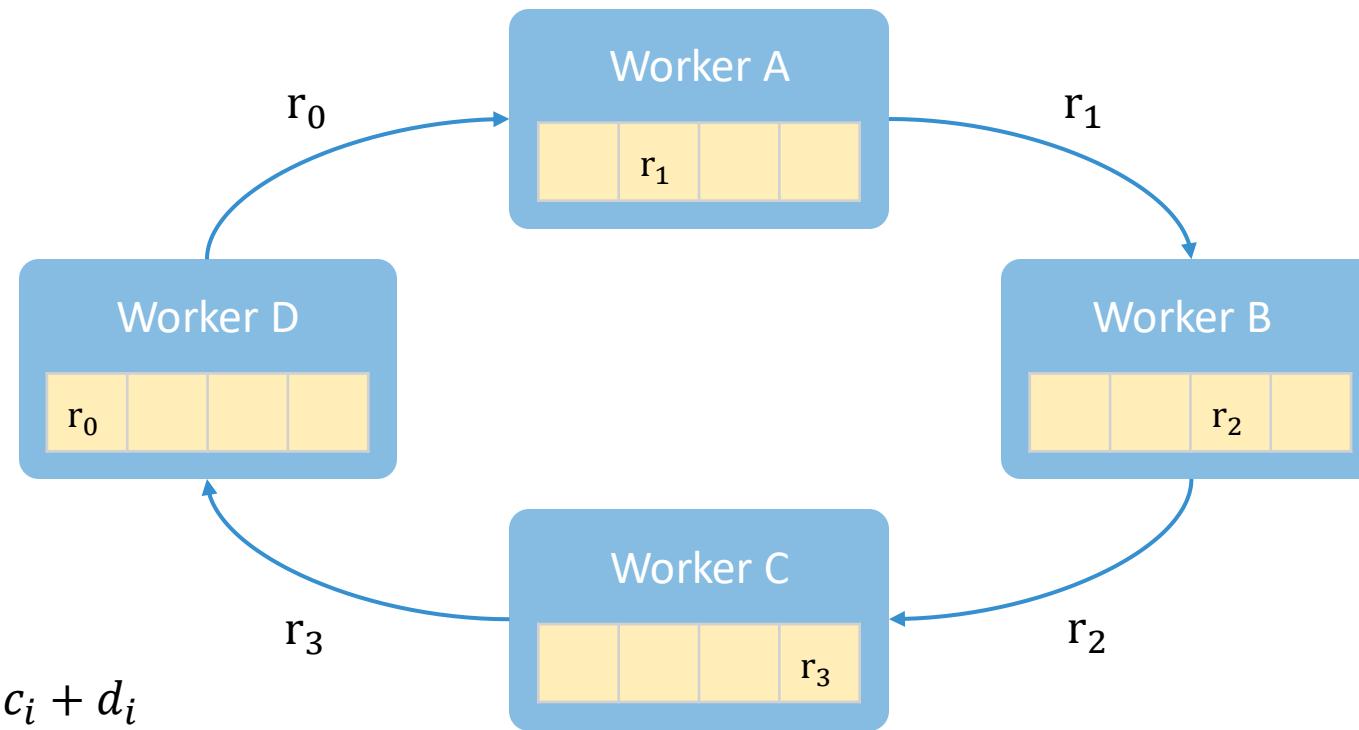
Ring All-Reduce

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times



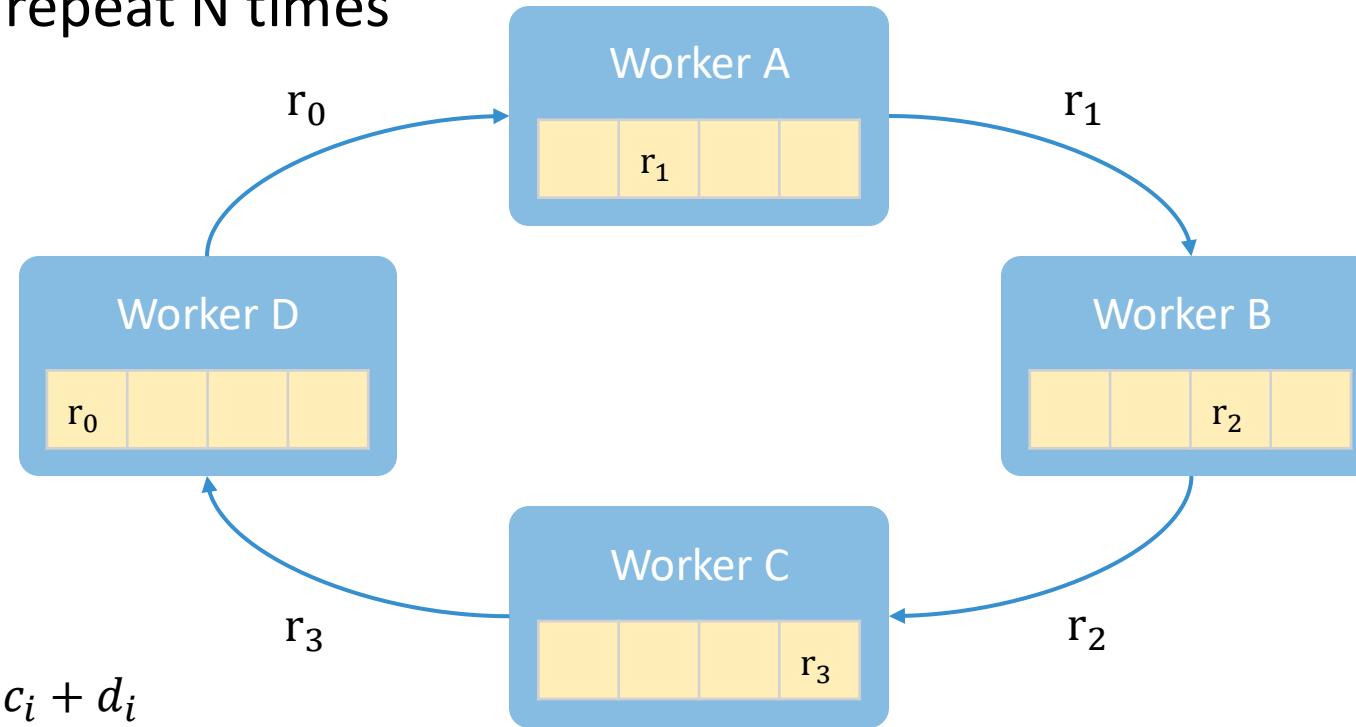
Ring All-Reduce

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- After step 1, each worker has the aggregated version of M/N parameters



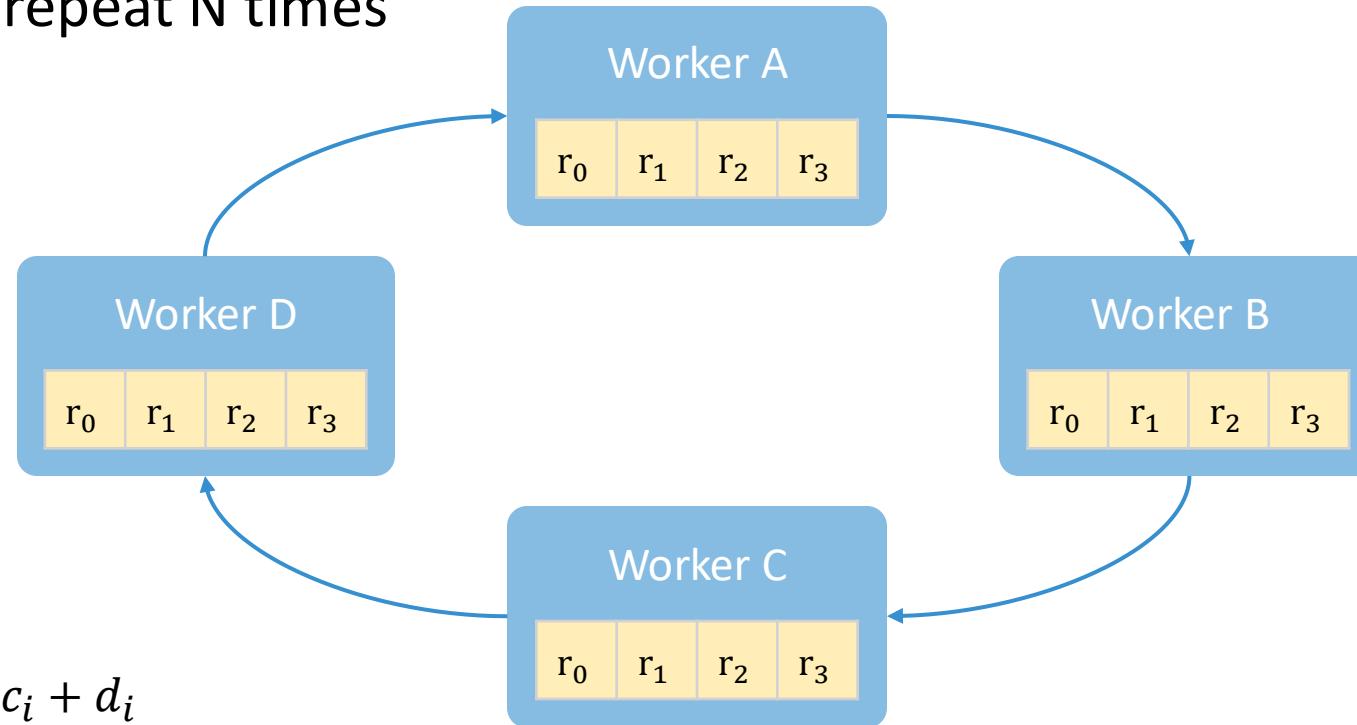
Ring All-Reduce

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times



Ring All-Reduce

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times

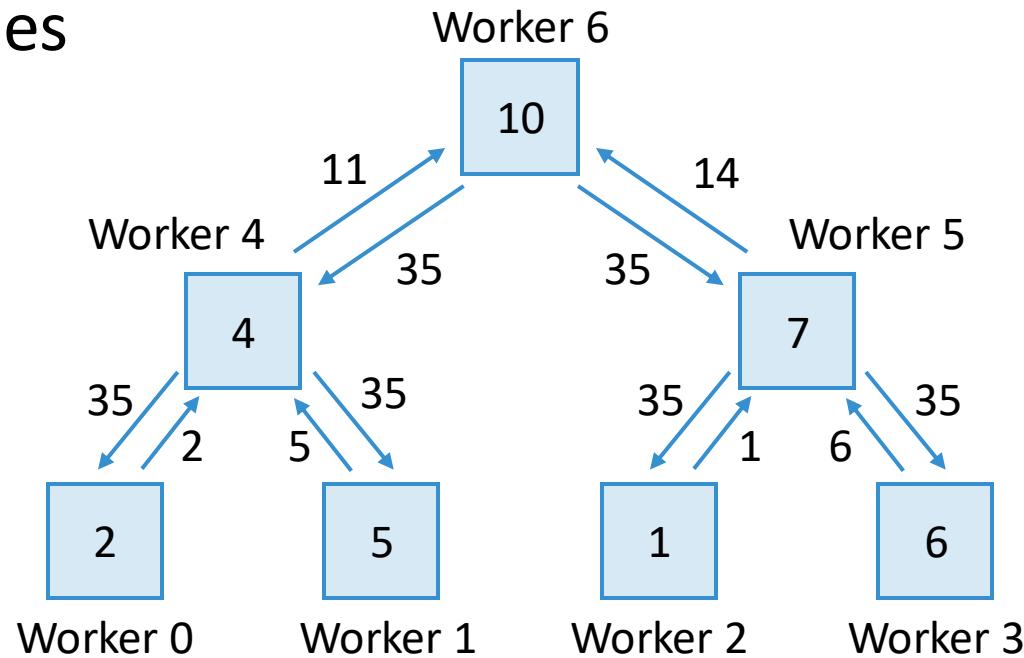


Ring All-Reduce

- Construct a ring of N workers, divide M parameters into N slices
- Step 1 (Aggregation): each worker send one slice (M/N parameters) to the next worker on the ring; repeat N times
- Step 2 (Broadcast): each worker send one slice of aggregated parameters to the next worker; repeat N times
- Overall communication: $2 * M * N$ parameters
 - Aggregation: $M * N$ parameters
 - Broadcast: $M * N$ parameters

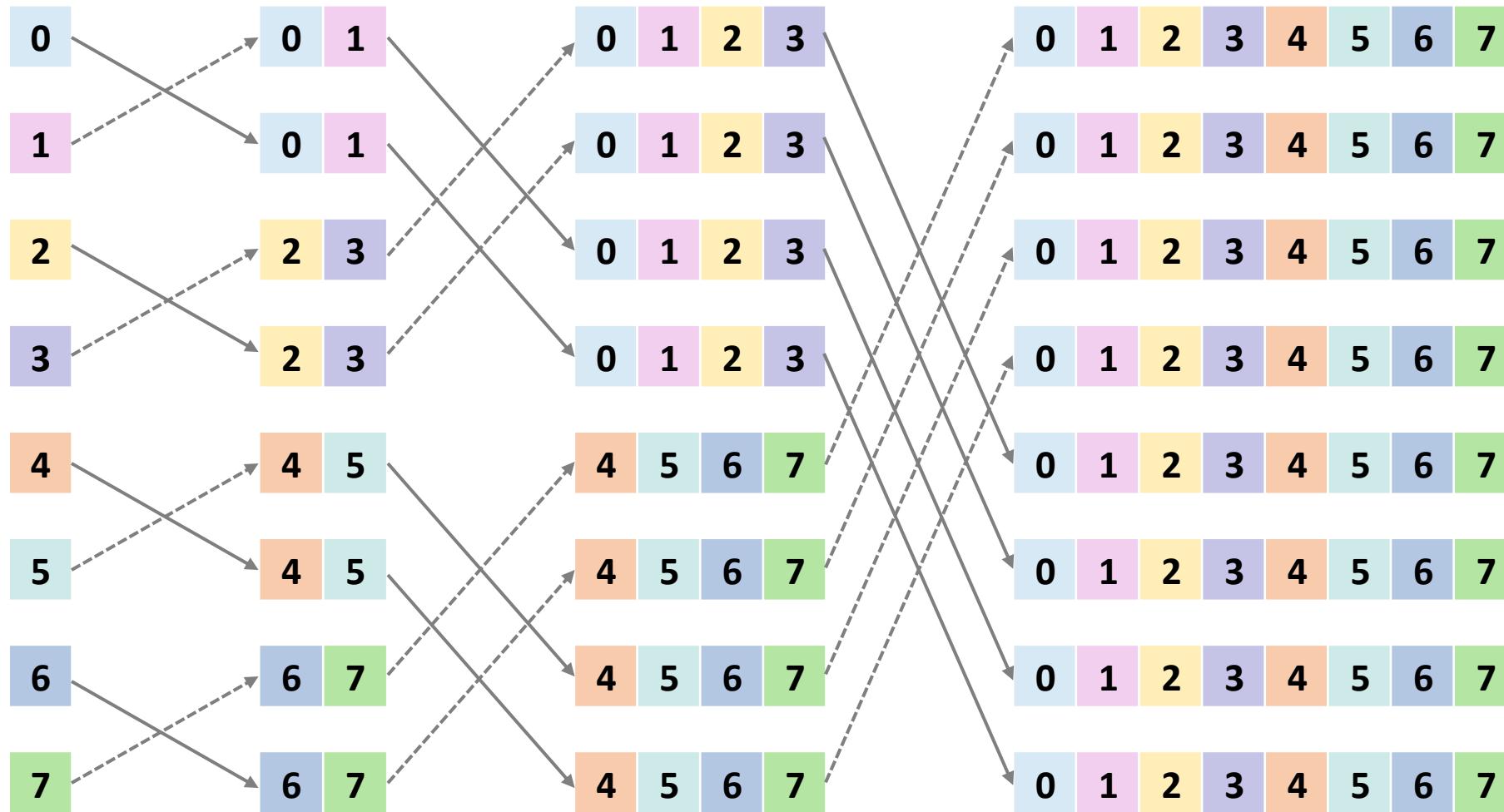
Tree All-Reduce

- Construct a tree of N workers;
- Step 1 (Aggregation): each worker sends M parameters to its parent; repeat $\log(N)$ times
- Step 2 (Broadcast): each worker sends M parameters to its children; repeat $\log(N)$ times



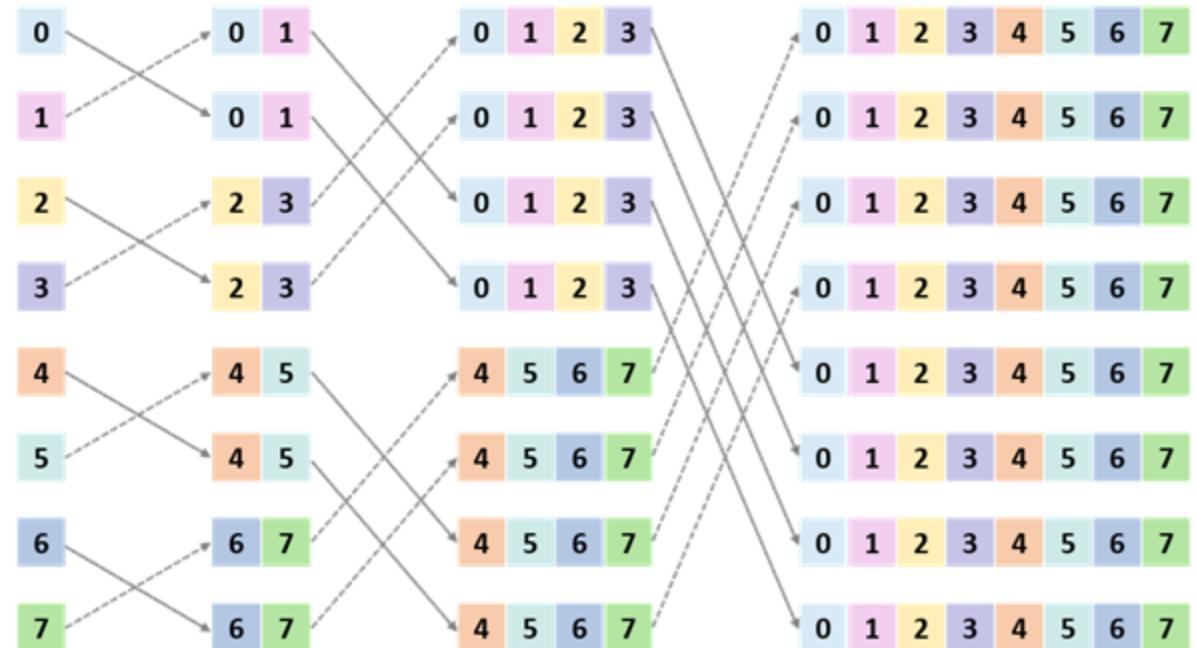
- Construct a tree of N workers;
- Step 1 (Aggregation): each worker sends M parameters to its parent;
repeat $\log(N)$ times
- Step 2 (Broadcast): each worker sends M parameters to its children;
repeat $\log(N)$ times
- Overall communication: $2 * N * M$ parameters
 - Aggregation: $M * N$ parameters
 - Broadcast: $M * N$ parameters

Butterfly Network



Butterfly All-Reduce

- Repeat $\log(N)$ times:
 1. Each worker sends M parameters to its target node in the butterfly network
 2. Each worker aggregates gradients locally
- Overall communication: $N * M * \log(N)$ parameters



Comparing different All-Reduce Methods

	Parameter Server	Naïve All-Reduce	Ring All-Reduce	Tree All-Reduce	Butterfly All-Reduce
Overall communication	$2 \times N \times M$	$N^2 \times M$	$2 \times N \times M$	$2 \times N \times M$	$N \times M \times \log N$

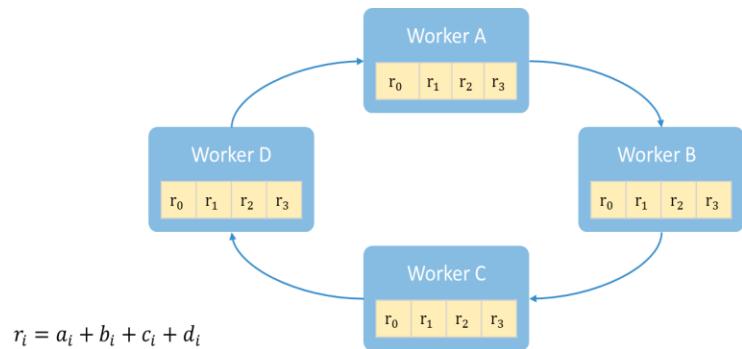
- Question: Ring All-Reduce is more efficient and scalable then Tree All-Reduce and Parameter Server, why?

Ring v.s. Tree v.s. Parameter Server

Ring All-Reduce:

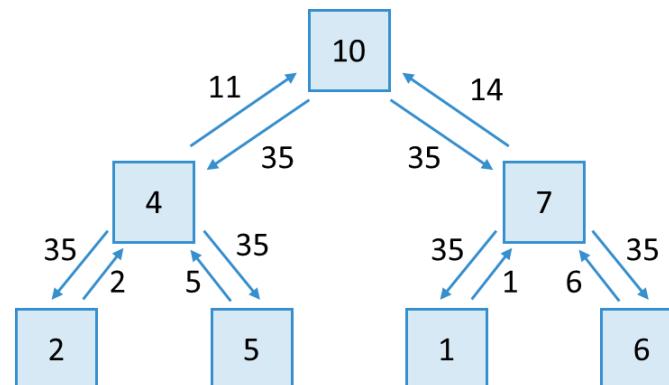
- Best latency
- Balanced workload across workers
- More scalable since each worker

sends $2*M$ parameters (independent to the number of workers)



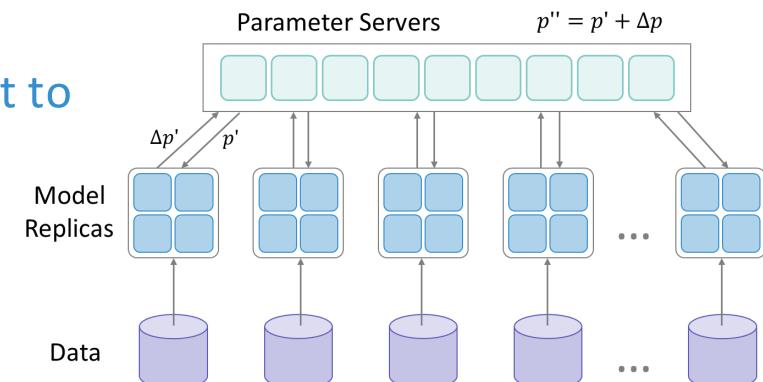
Each worker sends M/N parameters per iteration; repeat for $2*N$ iterations

Latency: $M/N * (2*N) / \text{bandwidth}$



Each worker sends M parameters per iteration; repeat for $2*\log(N)$ iterations

Latency: $M * 2 * \log(N) / \text{bandwidth}$

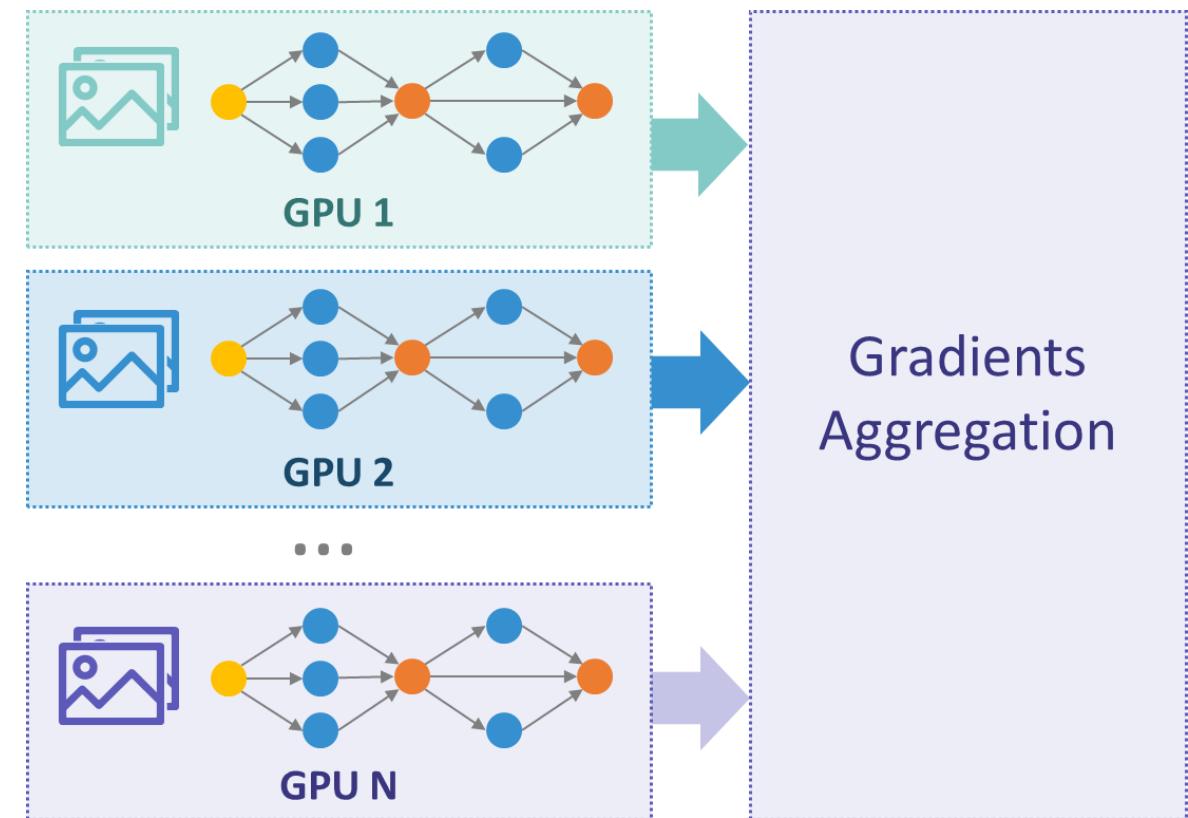


All workers send M parameters to parameter servers and receive M parameters from servers

Latency: $M * N / \text{bandwidth}$

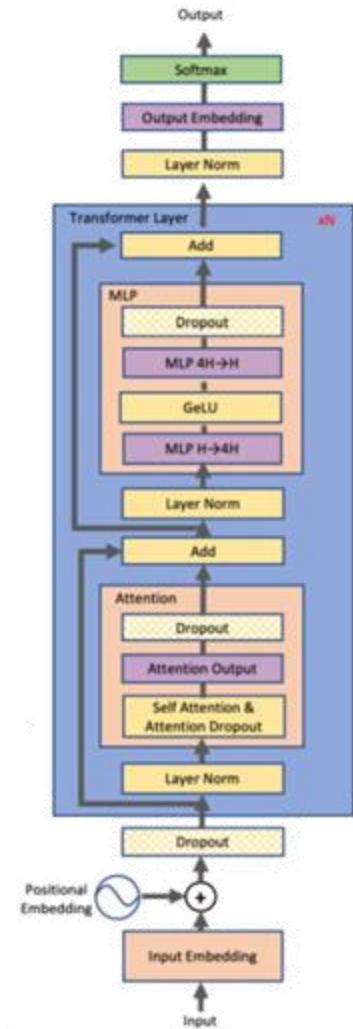
An Issue with Data Parallelism

- Each GPU saves a replica of the entire model
- Cannot train large models that exceed GPU device memory



Large Model Training Challenges

	BertLarge	GPT-2	Turing 17.2 NLG	GPT-3
Parameters	0.32B	1.5B	17.2B	175B
Layers	24	48	78	96
Hidden Dimension	1024	1600	4256	12288
Relative Computation	1x	4.7x	54x	547x
Memory Footprint	5.12GB	24GB	275GB	2800GB



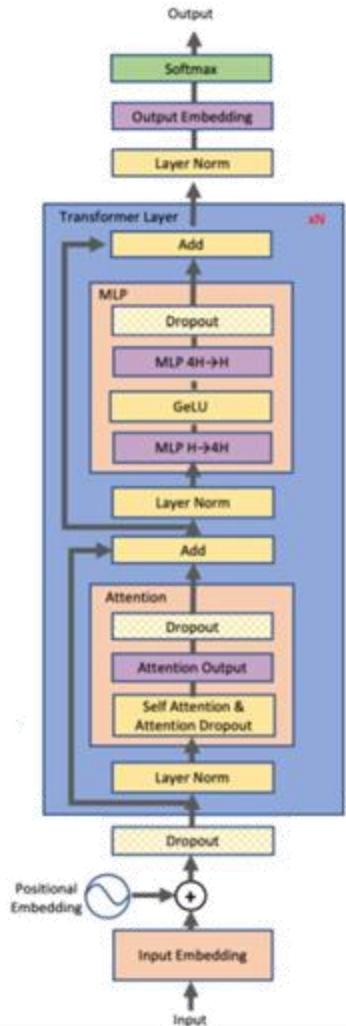
Large Model Training Challenges

	BertLarge	GPT-2	Turing 17.2 NLG	GPT-3
Parameters	0.32B	1.5B	17.2B	175B
Layers	24	48	78	96
Hidden Dimension	1024	1600	4256	12288
Relative Computation	1x	4.7x	54x	547x
Memory Footprint	5.12GB	24GB	275GB	2800GB

NVIDIA V100 GPU memory capacity: 16G/32G

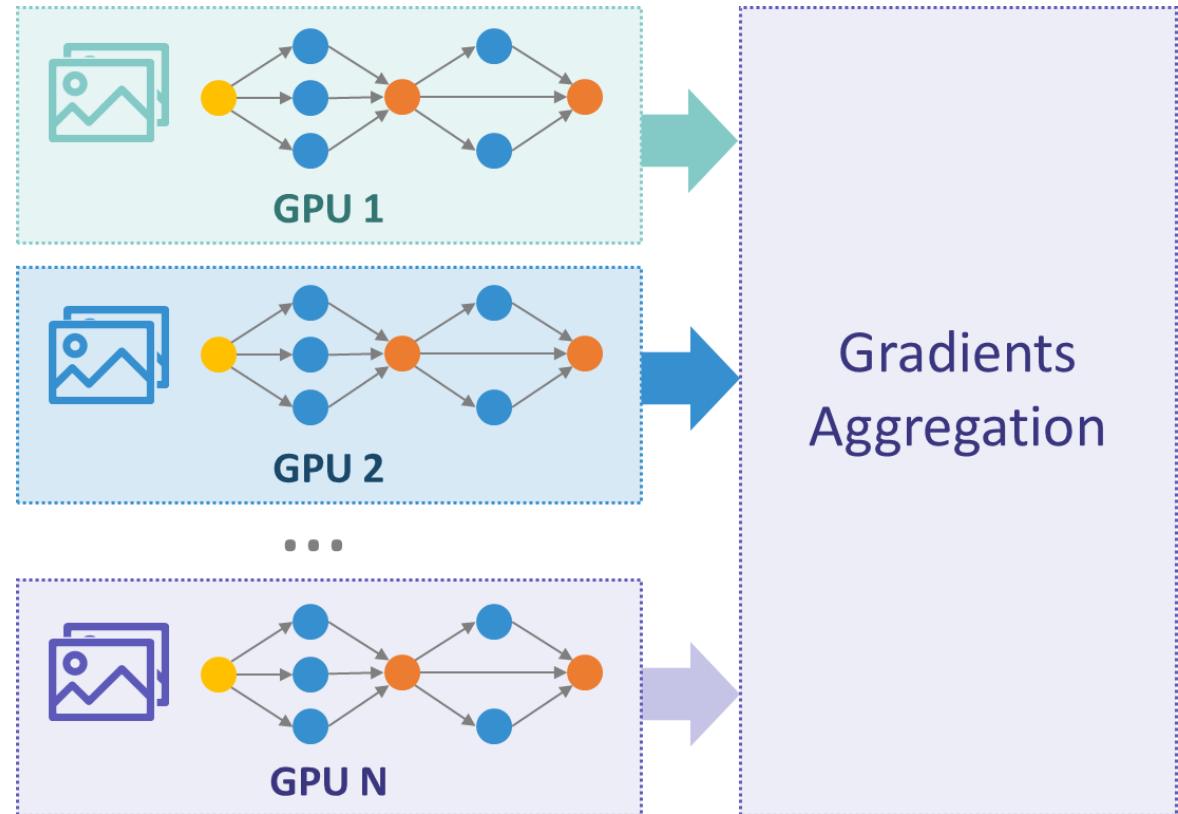
NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory



ZeRO: Zero Redundancy Optimizer

- Eliminating data redundancy in data parallel training
- A widely used technique for data parallel training of large models



Revisit: Stochastic Gradient Descent

```
For t = 1 to T      Backward pass      Forward pass
    
$$\Delta w = \eta \times \frac{1}{b} \sum_{i=1}^b \nabla \left( \text{loss}(f_w(x_i, y_i)) \right) \quad // \text{compute derivative and update}$$

    w -= \Delta w \quad // apply update
```

End

Adaptive Learning Rates (Adam)

For $t = 1$ to T

$$g = \frac{1}{b} \sum_{i=1}^b \nabla \left(\text{loss}(f_w(x_i, y_i)) \right)$$

$\Delta w = \text{adam}(g)$

$w \leftarrow w - \Delta w$ // apply update

End

$$\nu_t = \beta_1 * \nu_{t-1} - (1 - \beta_1) * g_t$$
$$s_t = \beta_2 * s_{t-1} - (1 - \beta_2) * g_t^2$$

$$\Delta \omega_t = -\eta \frac{\nu_t}{\sqrt{s_t + \epsilon}} * g_t$$

g_t : Gradient at time t along ω^j

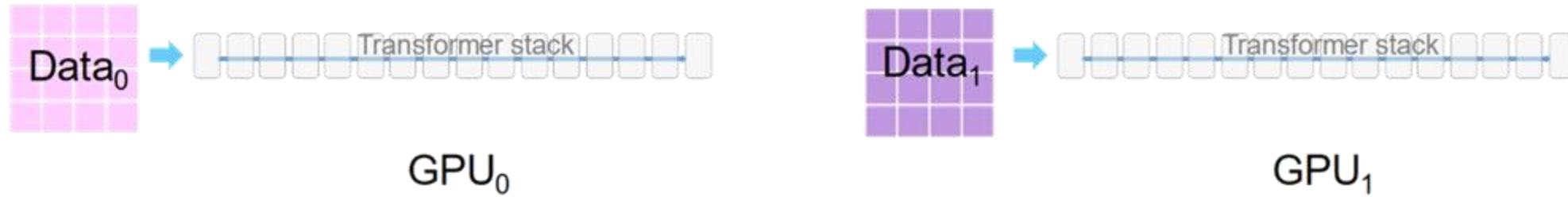
ν_t : Exponential Average of gradients along ω_j

s_t : Exponential Average of squares of gradients along ω_j

β_1, β_2 : Hyperparameters

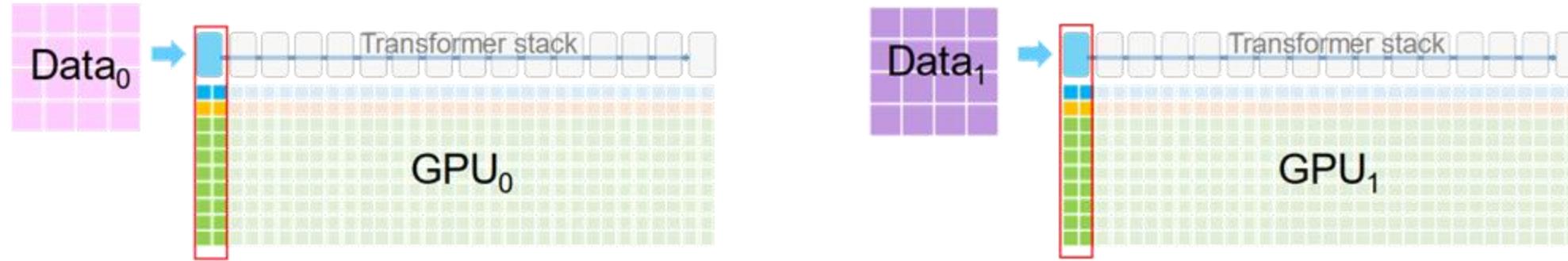
[1] Kingma and Ba, "Adam: A Method for Stochastic Optimization", 2014,
<https://arxiv.org/abs/1412.6980>

Understanding Memory Consumption



A 16-layer transformer model $\square = 1$ layer

Understanding Memory Consumption



Each cell represents GPU memory used by its corresponding transformer layer

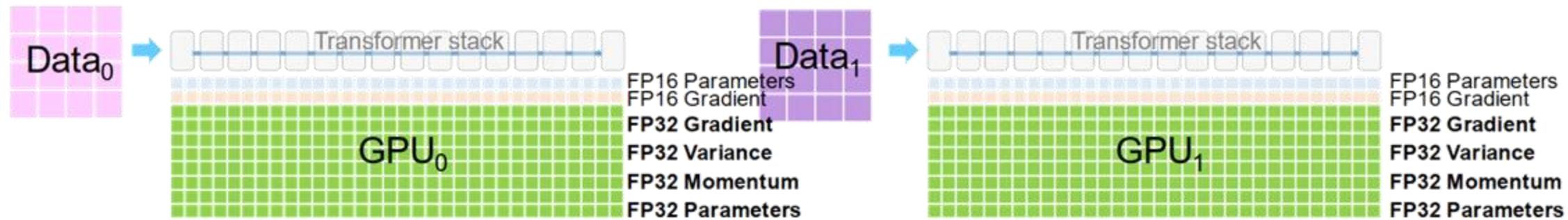
Understanding Memory Consumption

- FP16 parameter

Understanding Memory Consumption

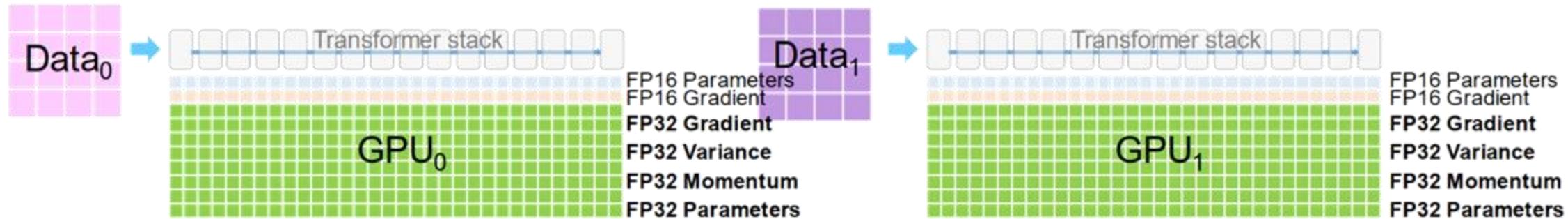
- FP16 parameter
- FP16 Gradients

Understanding Memory Consumption



- FP16 parameter
- FP16 Gradients
- FP32 Optimizer States
 - Gradients, Variance, Momentum, Parameters

Understanding Memory Consumption



- FP16 parameter: **2M bytes**
- FP16 Gradients: **2M bytes**
- FP32 Optimizer States : **16M bytes**
 - Gradients, Variance, Momentum, Parameters

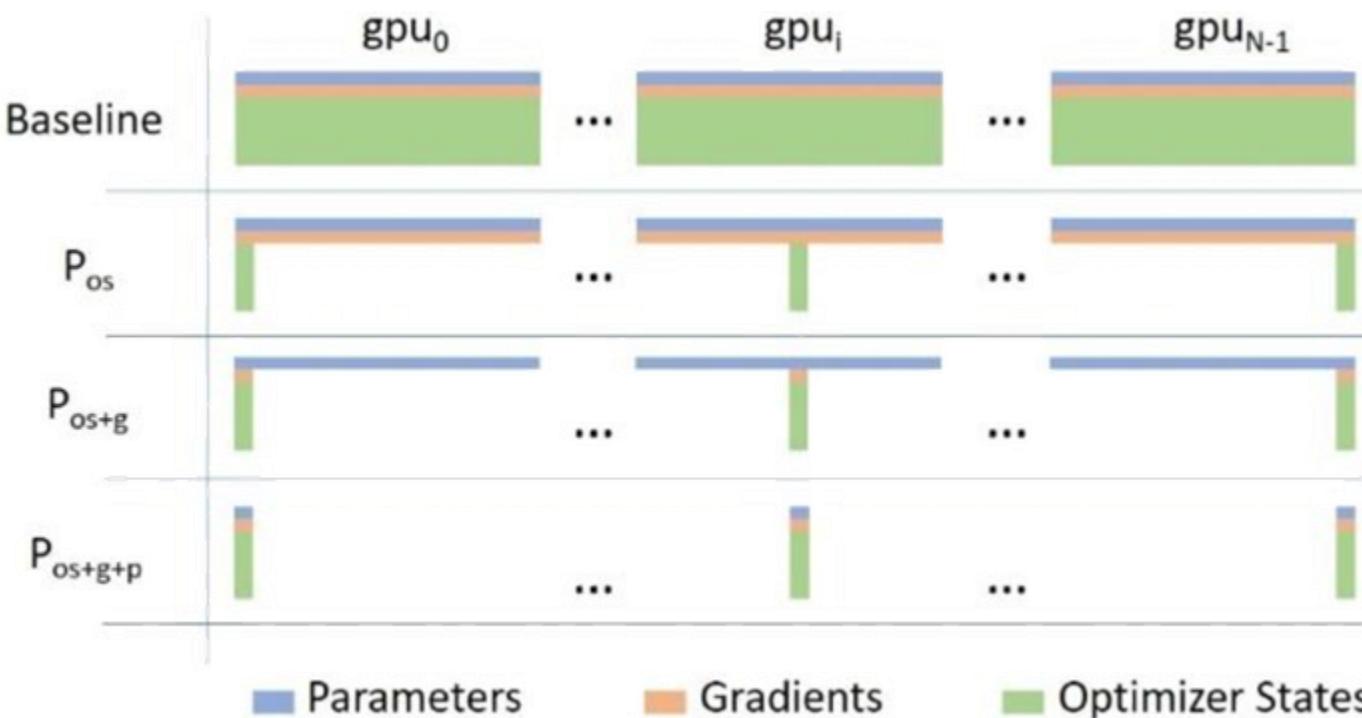
M = number of parameters in the model

Example 1B parameter model \rightarrow 20GB/GPU

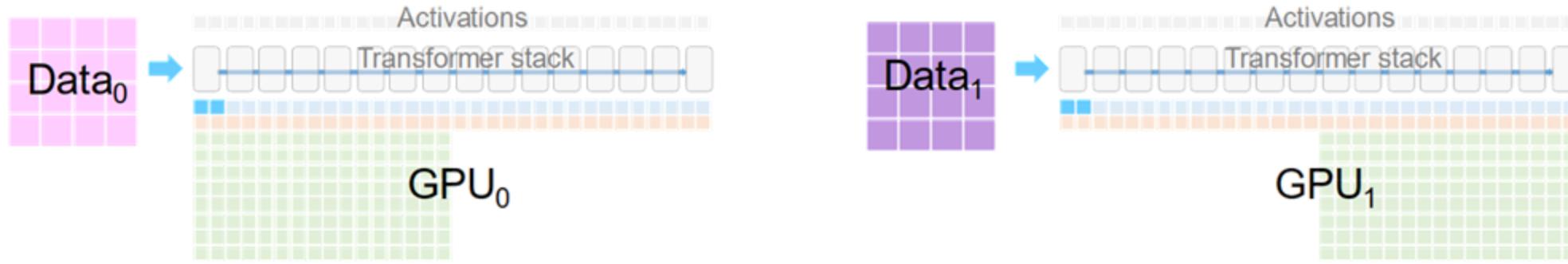
Memory consumption doesn't include:
• Input batch + activations

ZeRO-DP: ZeRO powered Data Parallelism

- ZeRO removes the redundancy across data parallel process
- Stage 1: partitioning optimizer states
- Stage 2: partitioning gradients
- Stage 3: partitioning parameters

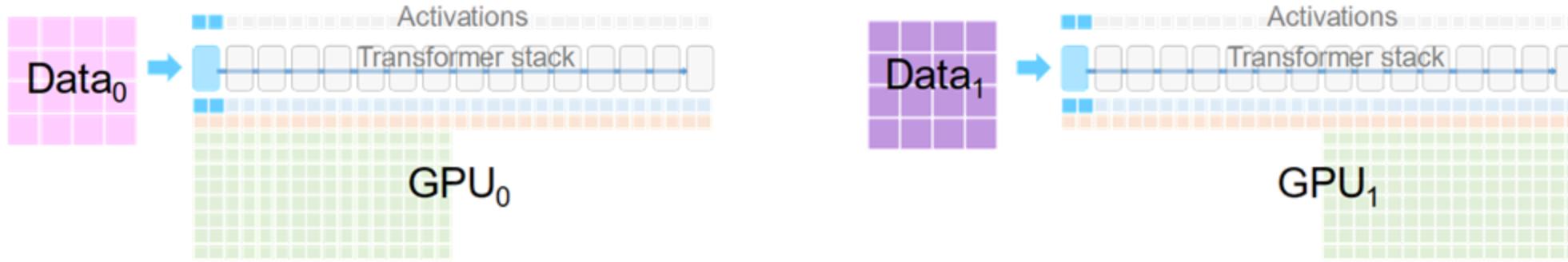


ZeRO Stage 1: Partitioning Optimizer States



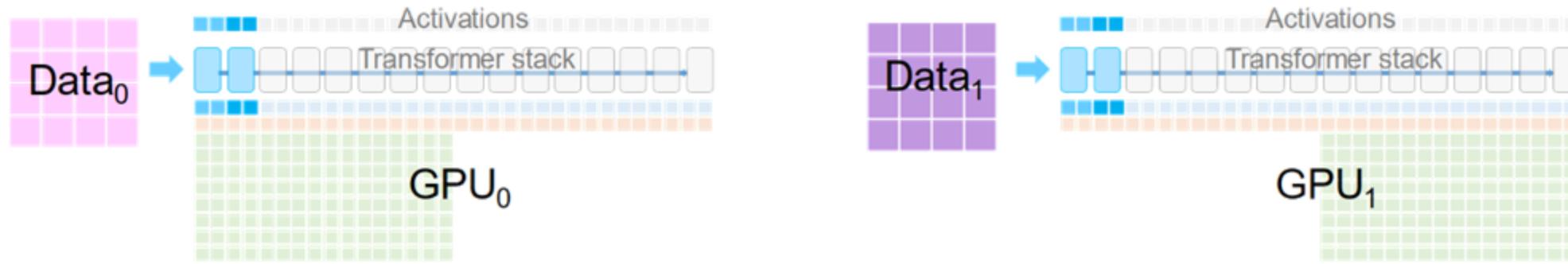
- ZeRO Stage 1
- Partitions optimizer states across GPUs

ZeRO Stage 1: Partitioning Optimizer States



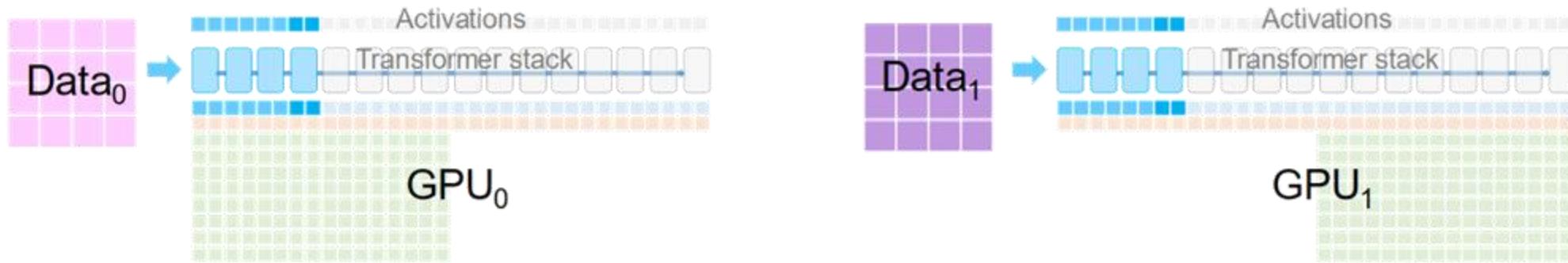
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

ZeRO Stage 1: Partitioning Optimizer States



- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

ZeRO Stage 1: Partitioning Optimizer States



- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

ZeRO Stage 1: Partitioning Optimizer States



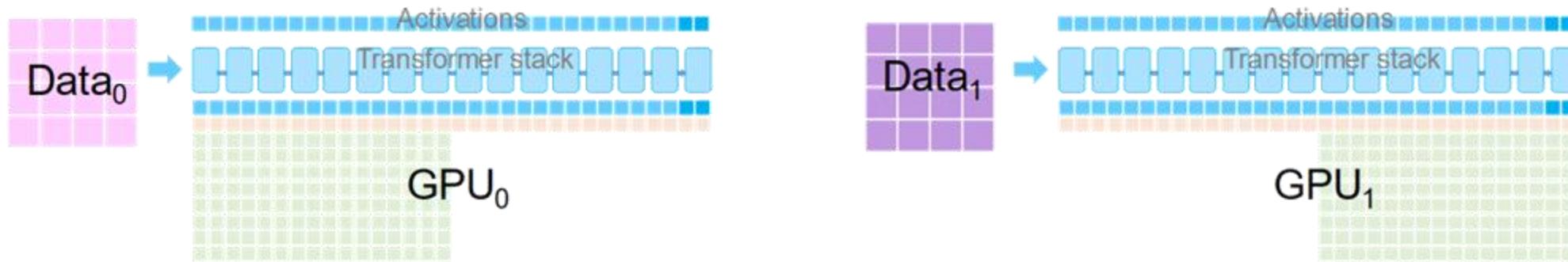
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

ZeRO Stage 1: Partitioning Optimizer States



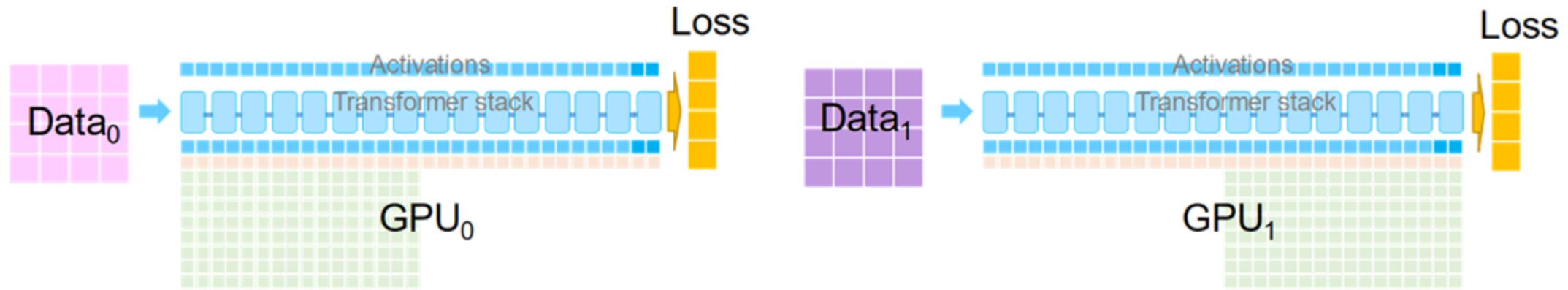
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

ZeRO Stage 1: Partitioning Optimizer States



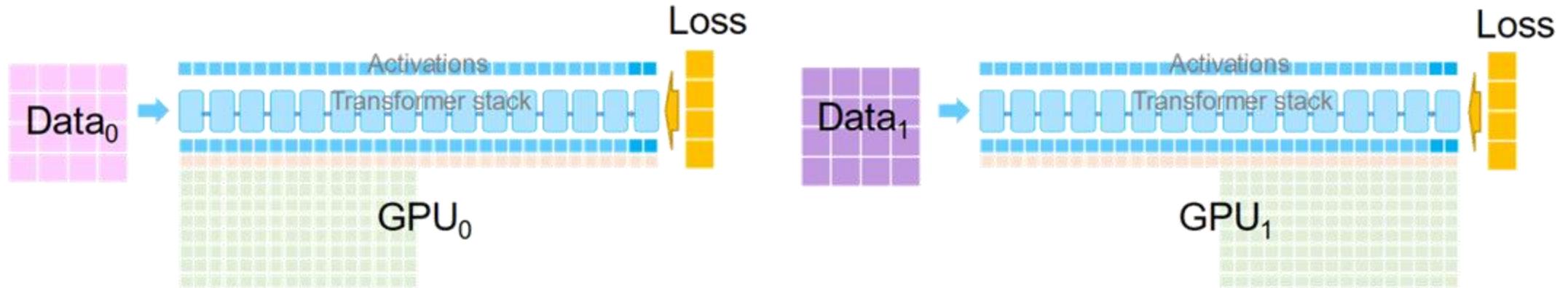
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

ZeRO Stage 1: Partitioning Optimizer States



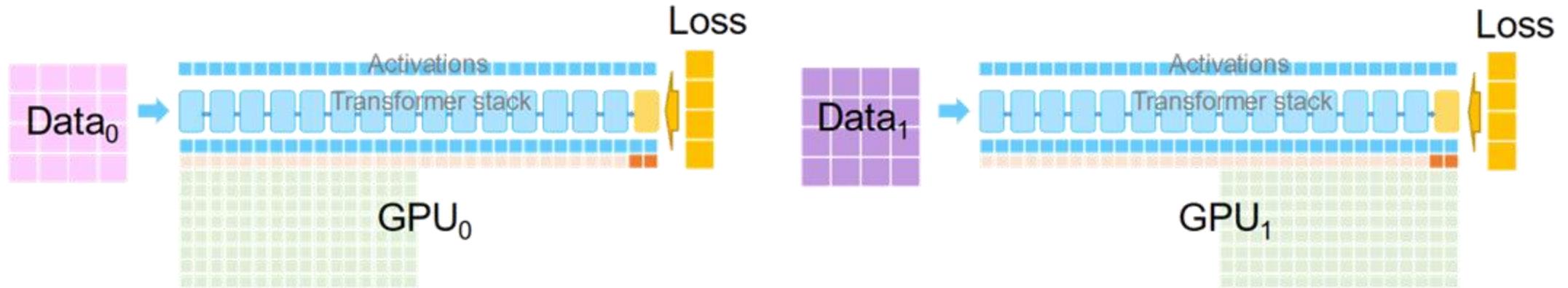
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks

ZeRO Stage 1: Partitioning Optimizer States



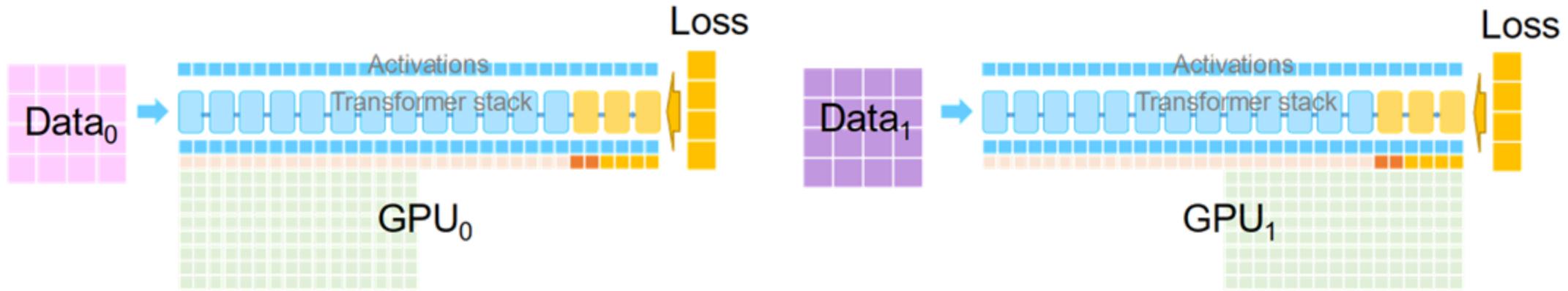
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

ZeRO Stage 1: Partitioning Optimizer States



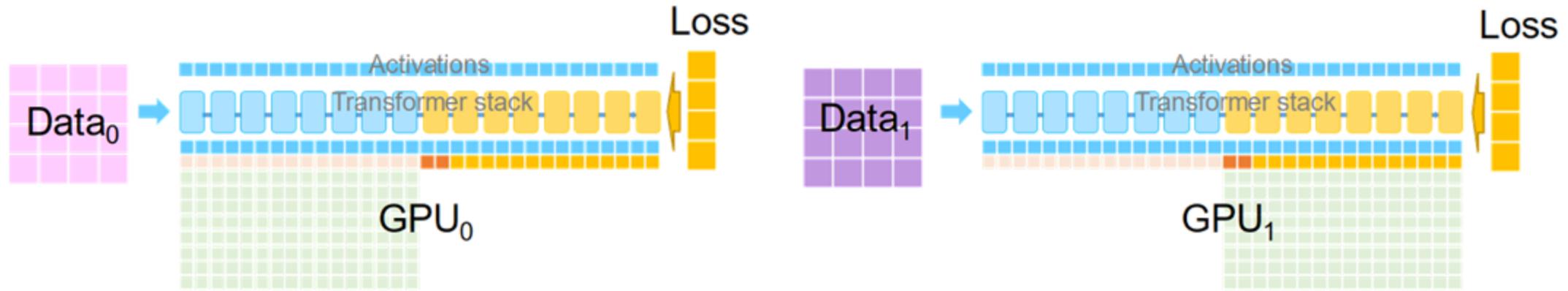
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

ZeRO Stage 1: Partitioning Optimizer States



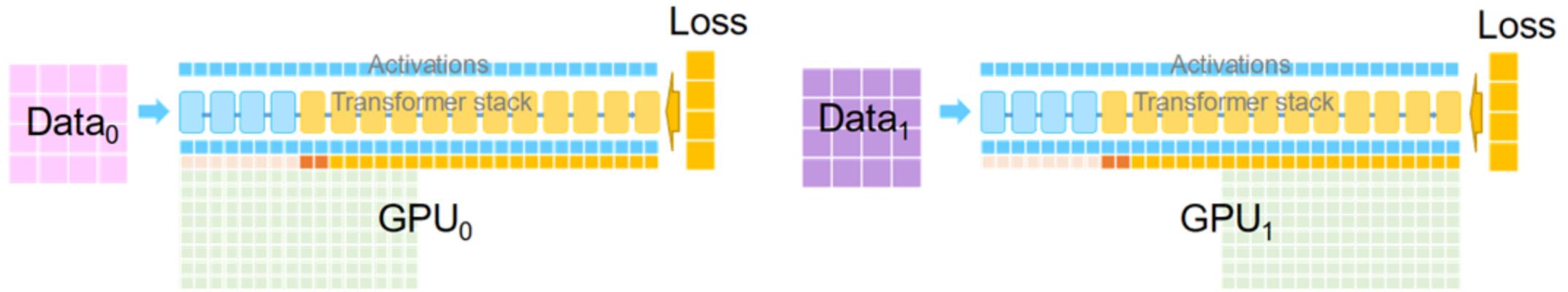
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

ZeRO Stage 1: Partitioning Optimizer States



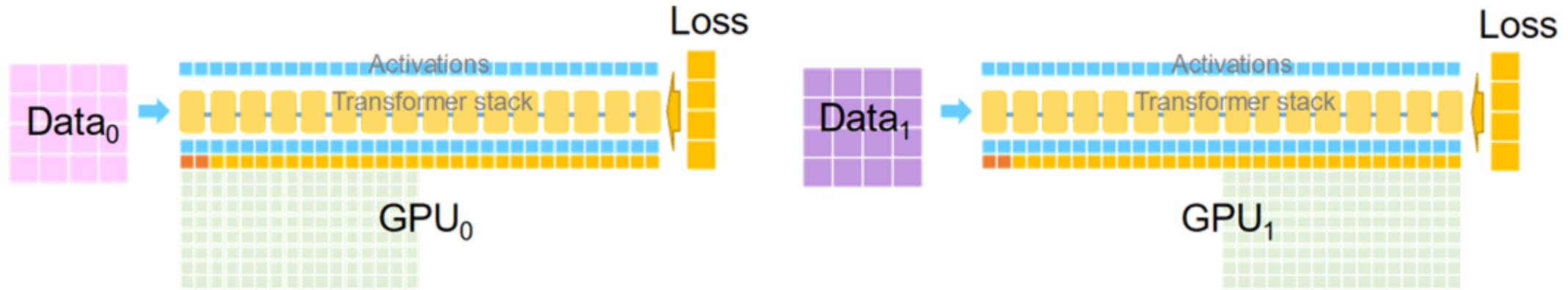
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

ZeRO Stage 1: Partitioning Optimizer States



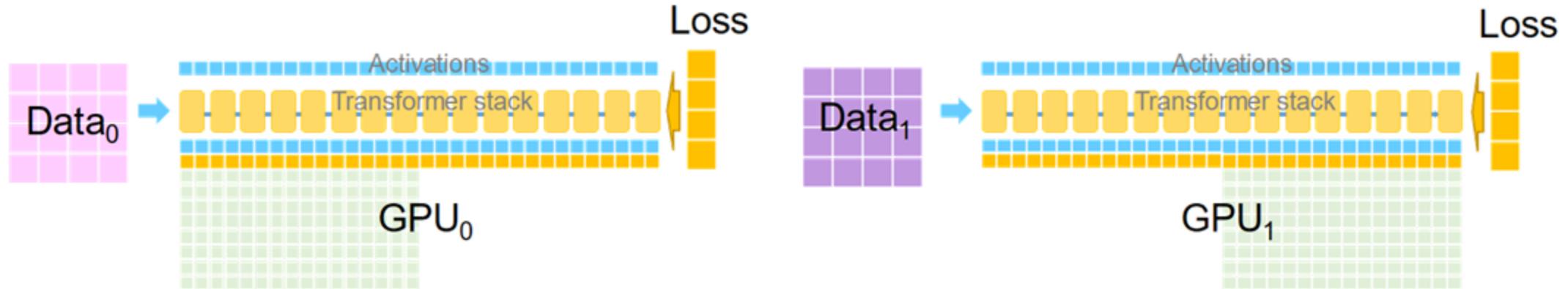
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

ZeRO Stage 1: Partitioning Optimizer States



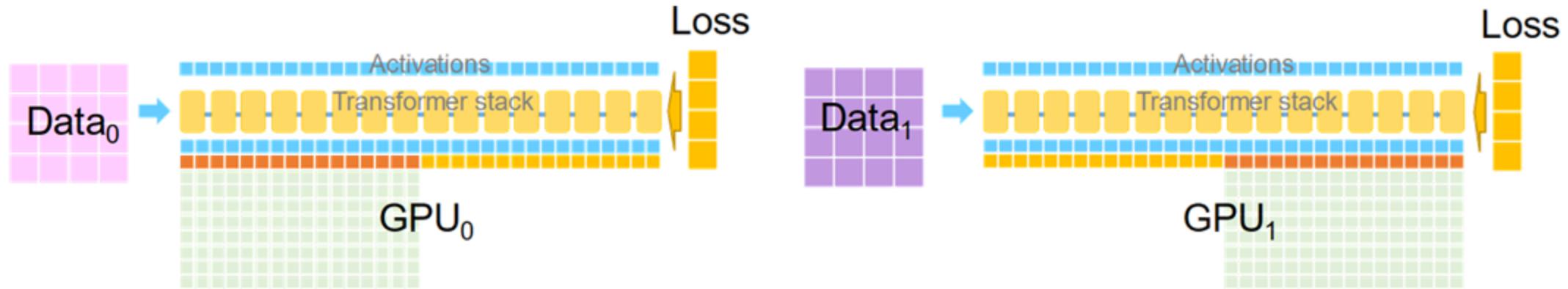
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients

ZeRO Stage 1: Partitioning Optimizer States



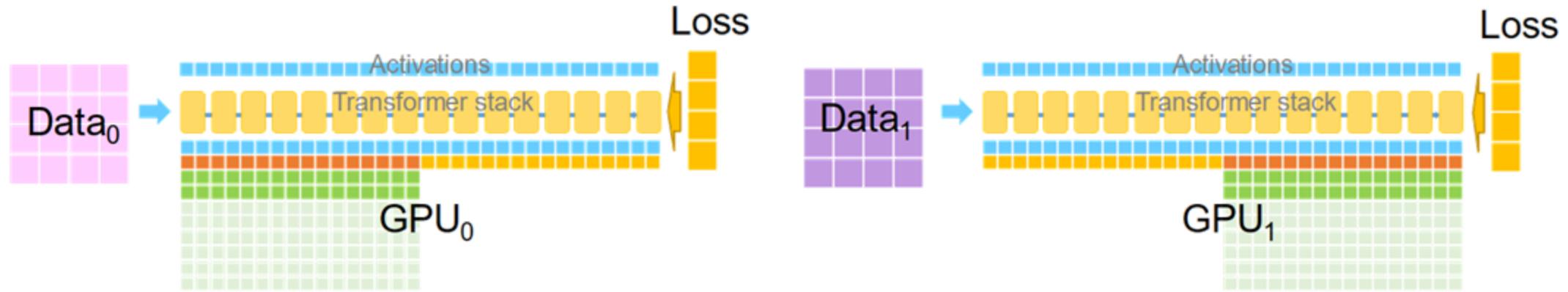
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and All-Reduce to average

ZeRO Stage 1: Partitioning Optimizer States



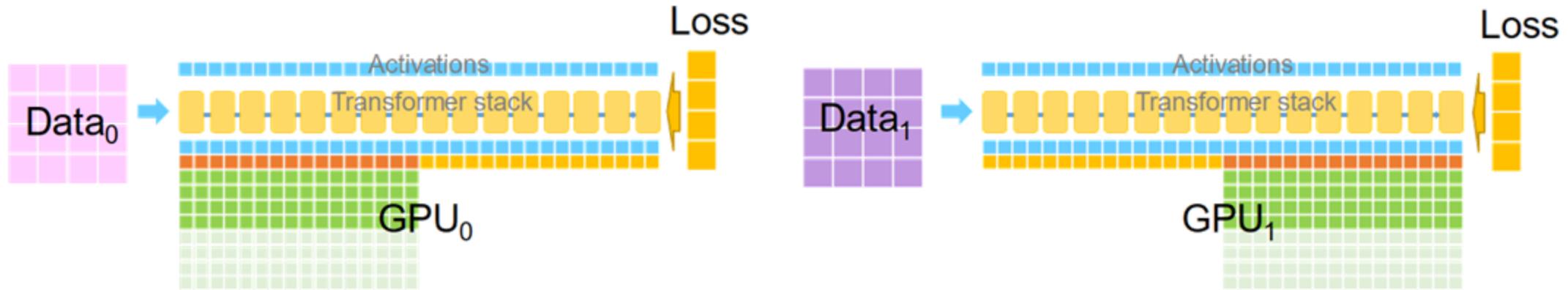
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and All-Reduce to average

ZeRO Stage 1: Partitioning Optimizer States



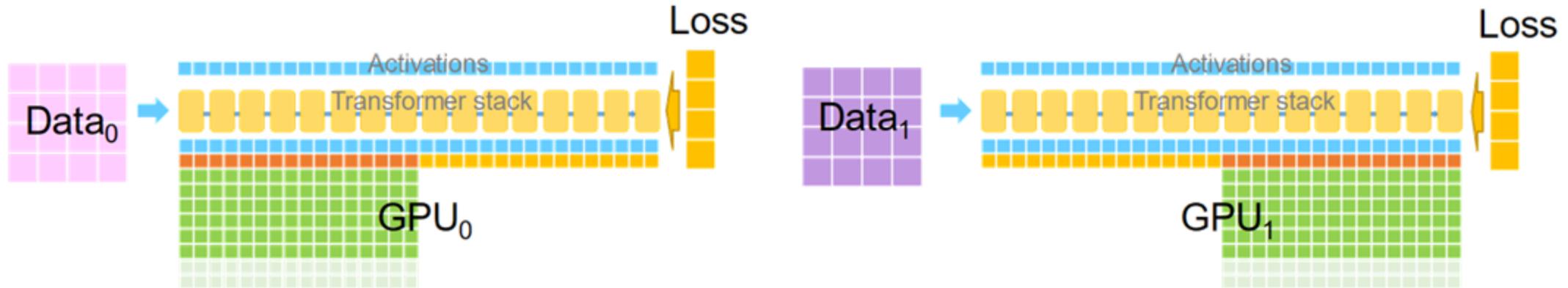
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and All-Reduce to average
- Update the FP32 weights with ADAM optimizer

ZeRO Stage 1: Partitioning Optimizer States



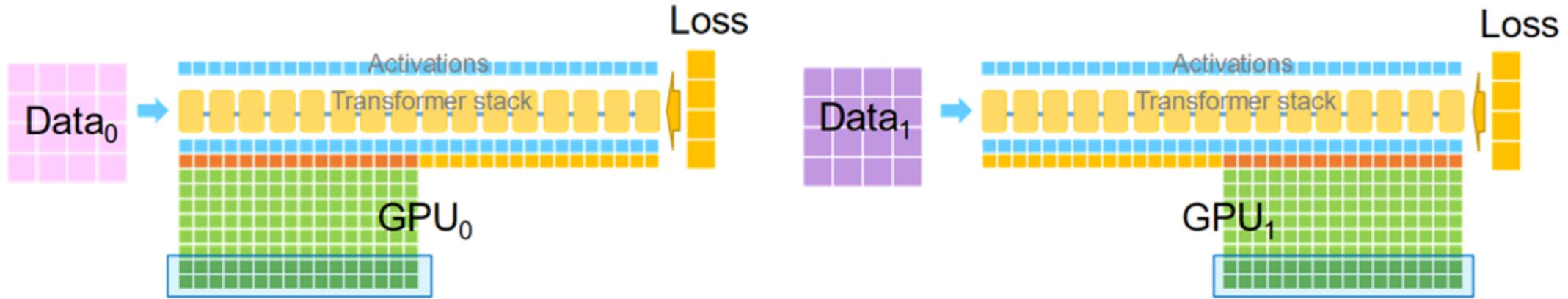
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and All-Reduce to average
- Update the FP32 weights with ADAM optimizer

ZeRO Stage 1: Partitioning Optimizer States



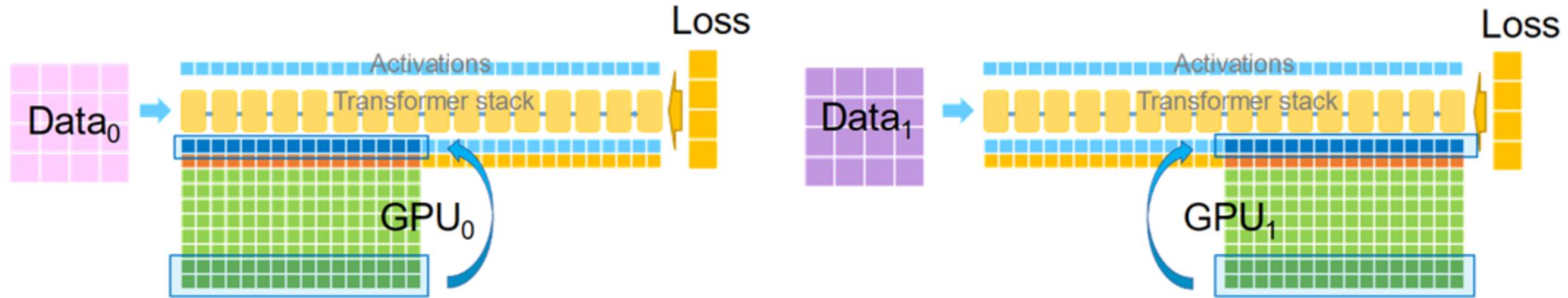
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and All-Reduce to average
- Update the FP32 weights with ADAM optimizer

ZeRO Stage 1: Partitioning Optimizer States



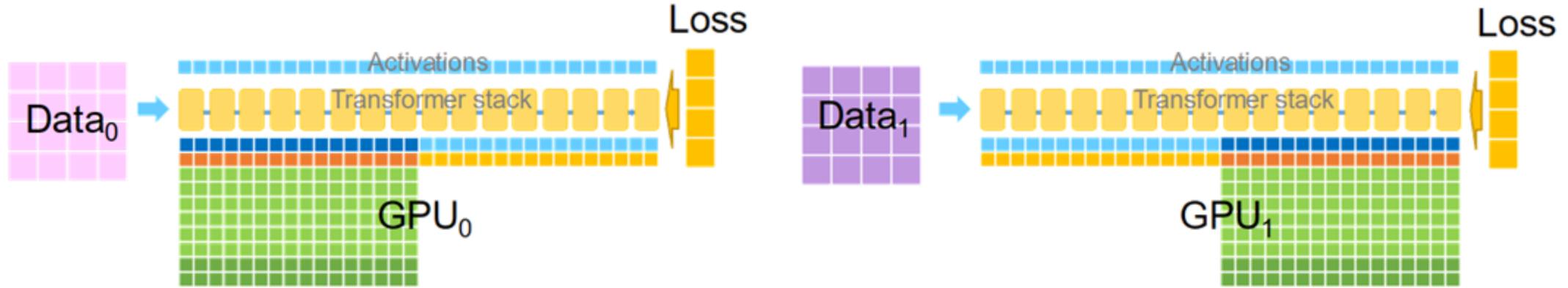
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and All-Reduce to average
- Update the FP32 weights with ADAM optimizer

ZeRO Stage 1: Partitioning Optimizer States



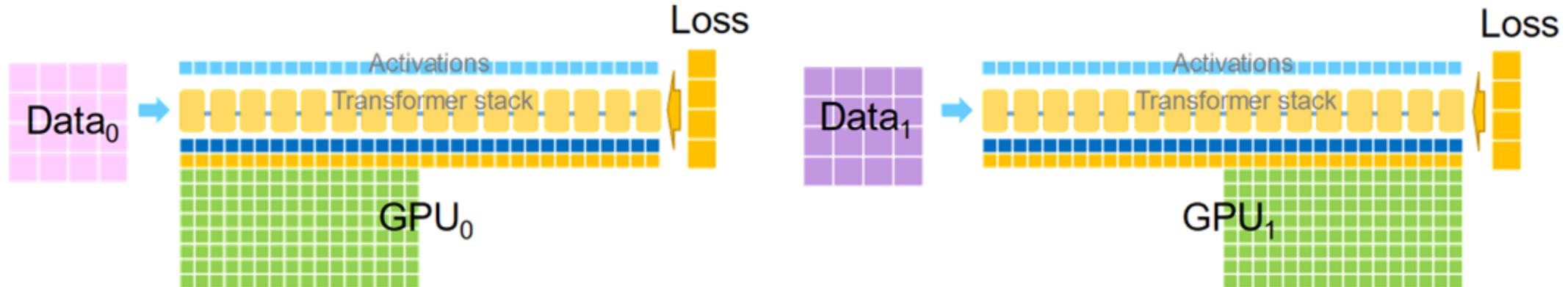
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and All-Reduce to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights

ZeRO Stage 1: Partitioning Optimizer States



- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and All-Reduce to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights
-

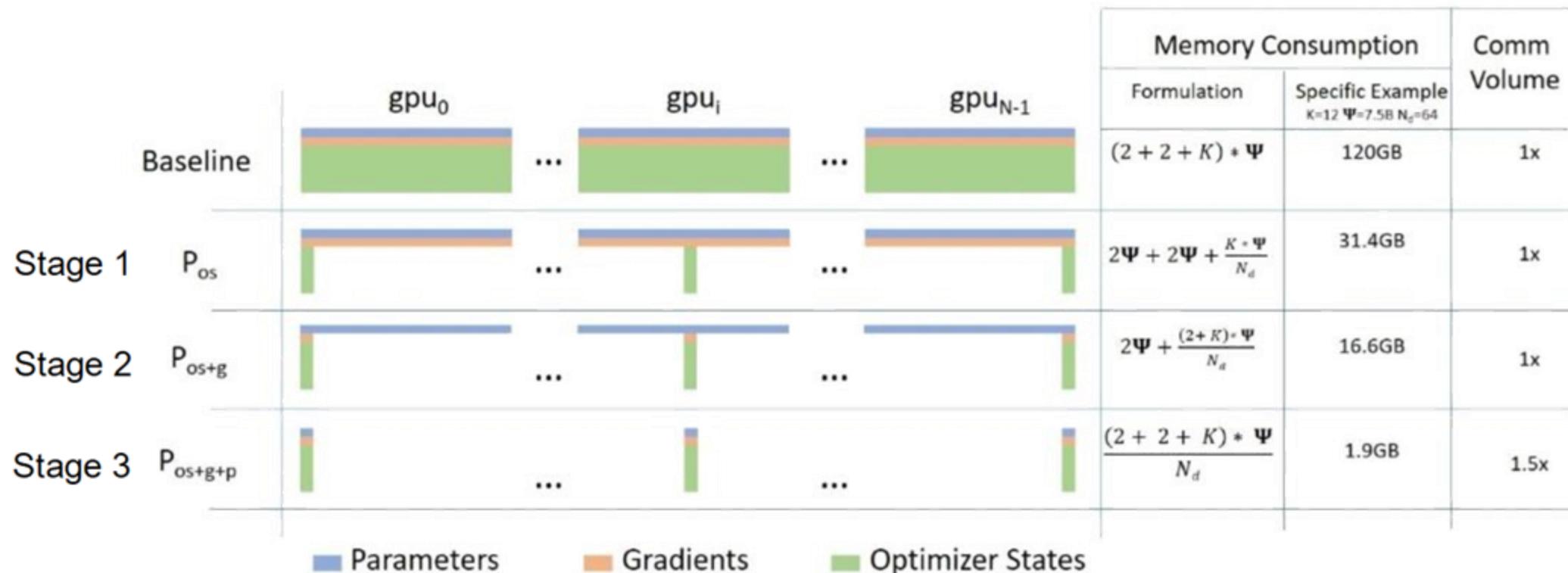
ZeRO Stage 1: Partitioning Optimizer States



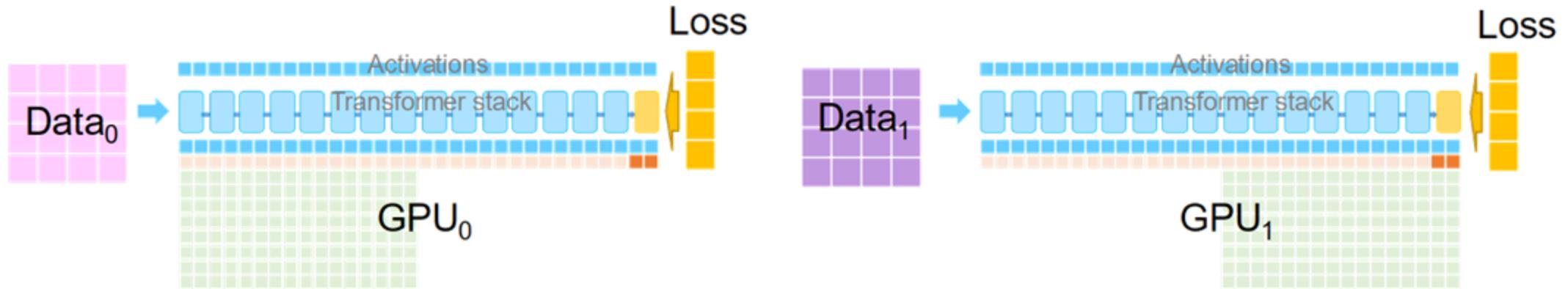
- ZeRO Stage 1
- Partitions optimizer states across GPUs
- Run Forward across the transformer blocks
- Backward propagation to generate FP16 gradients and All-Reduce to average
- Update the FP32 weights with ADAM optimizer
- Update the FP16 weights
- All Gather the FP16 weights to complete the iteration

ZeRO: Zero Redundancy Optimizer

- Progressive memory savings and communication volume



ZeRO Stage 2: Partitioning Gradients

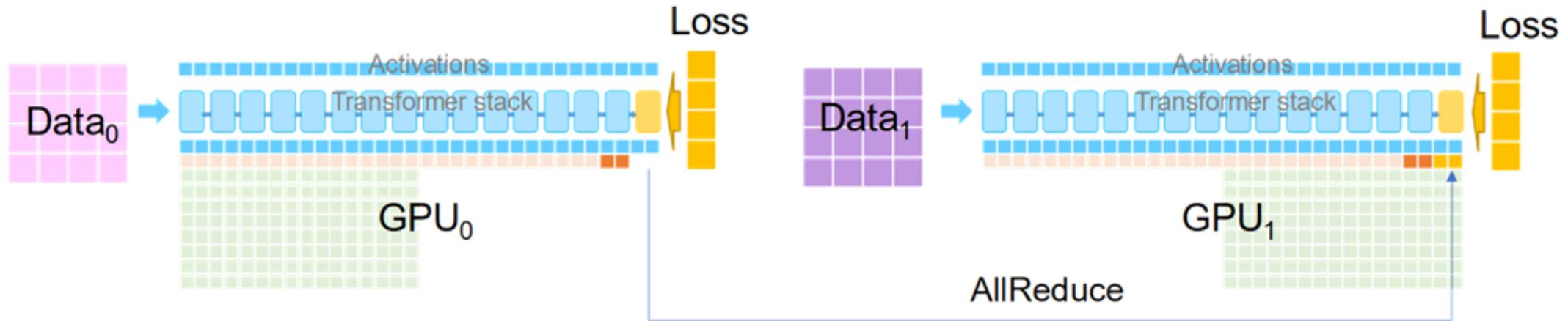


- Partitioning gradients across GPUs
- The forward process remains the same as stage 1

ZeRO Stage 2: Partitioning Gradients

- Partitioning gradients across GPUs
- Perform All-Reduce right after back propagation of each layer

ZeRO Stage 2: Partitioning Gradients

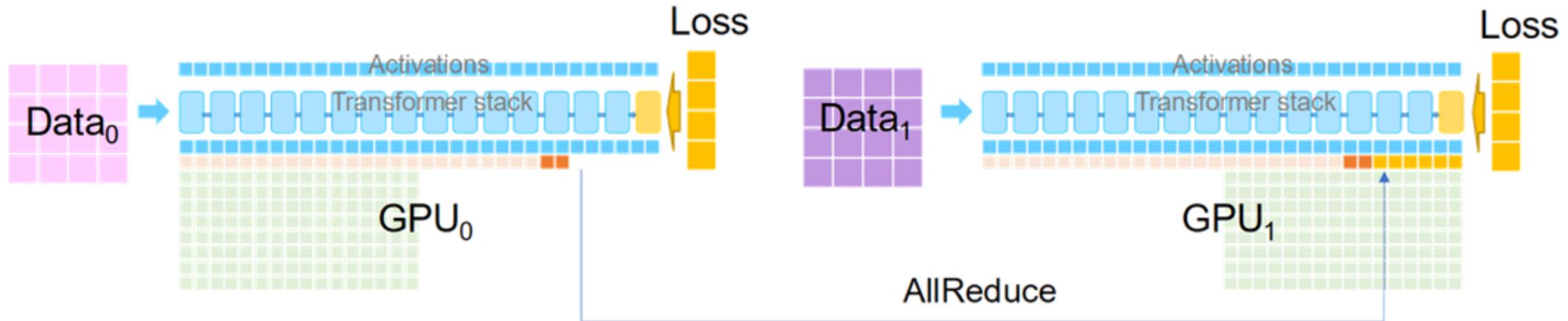


- Partitioning gradients across GPUs
- Only one GPU keeps the gradients after All-Reduce

ZeRO Stage 2: Partitioning Gradients

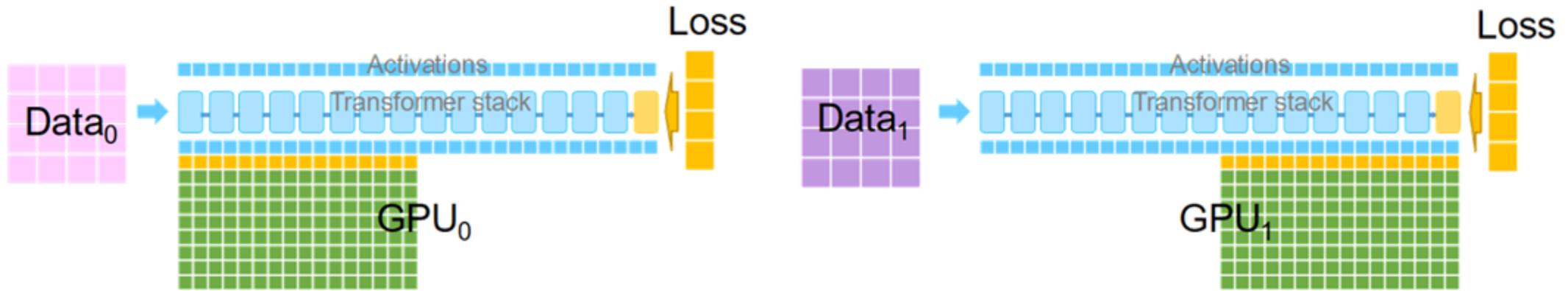
- Partitioning gradients across GPUs
- Reduce gradients on GPUs responsible for updating parameters

ZeRO Stage 2: Partitioning Gradients



- Partitioning gradients across GPUs
- Reduce gradients on GPUs responsible for updating parameters

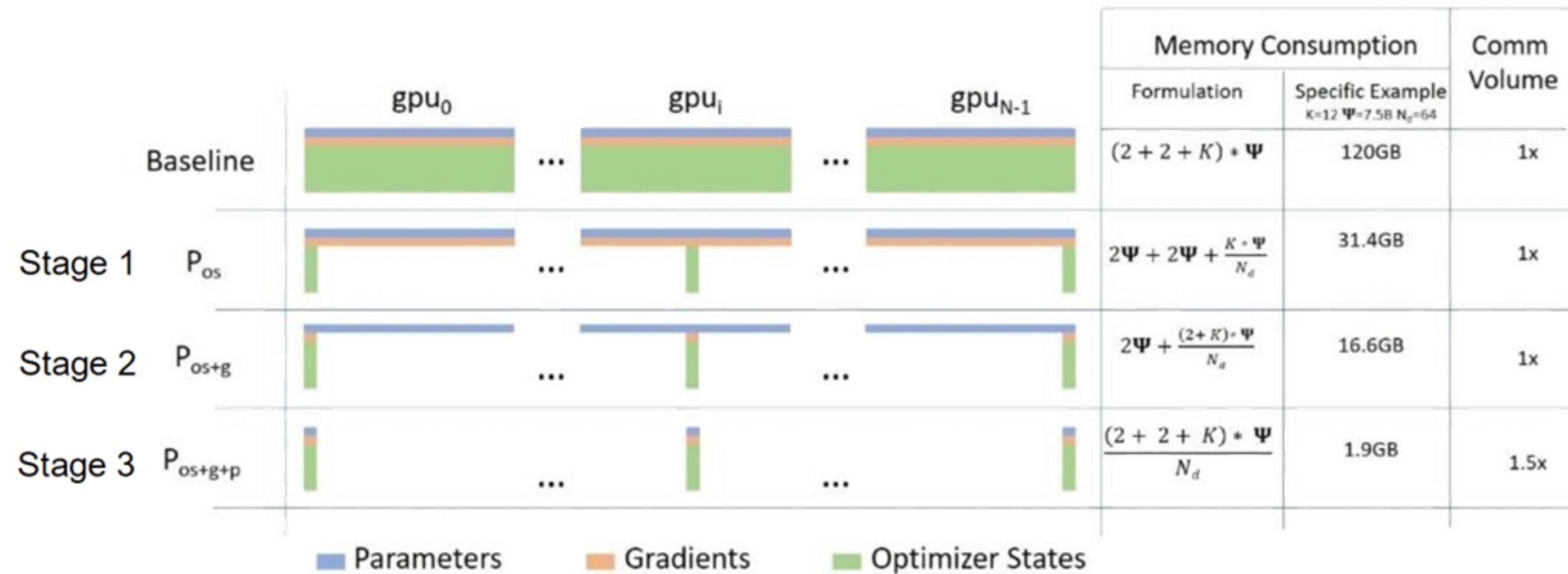
ZeRO Stage 2: Partitioning Gradients



- Partitioning gradients across GPUs
- Reduce gradients on GPUs responsible for updating parameters

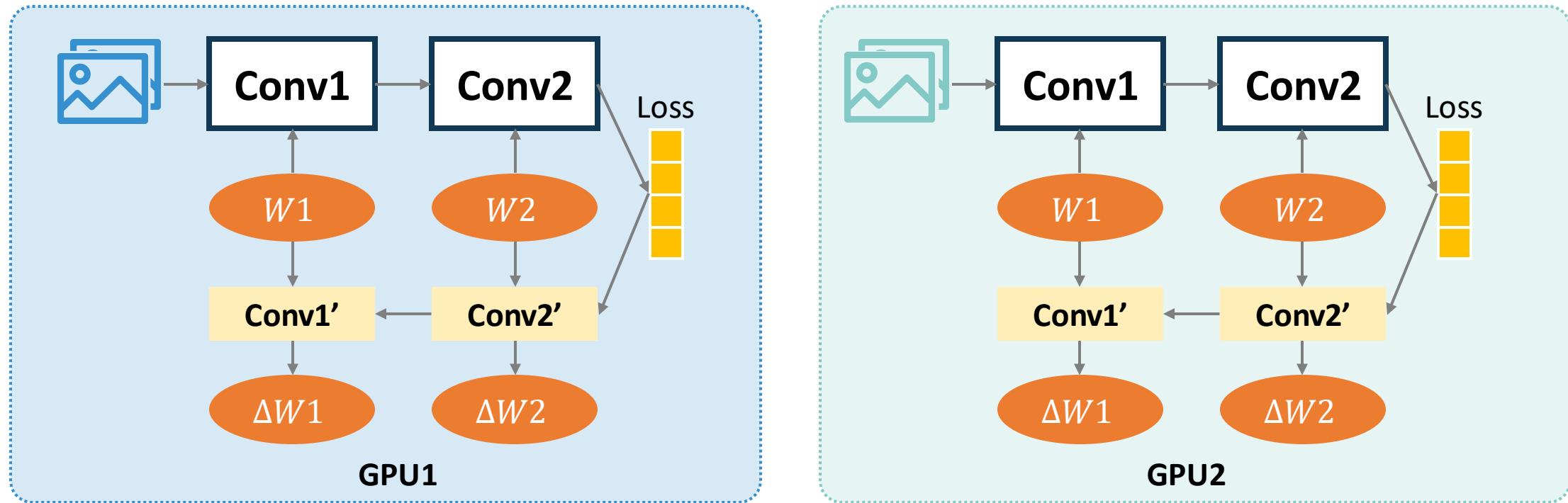
ZeRO: Zero Redundancy Optimizer

- Progressive memory savings and communication volume
- Turing NLP 17.2B is powered by Stage 1 and Megatron



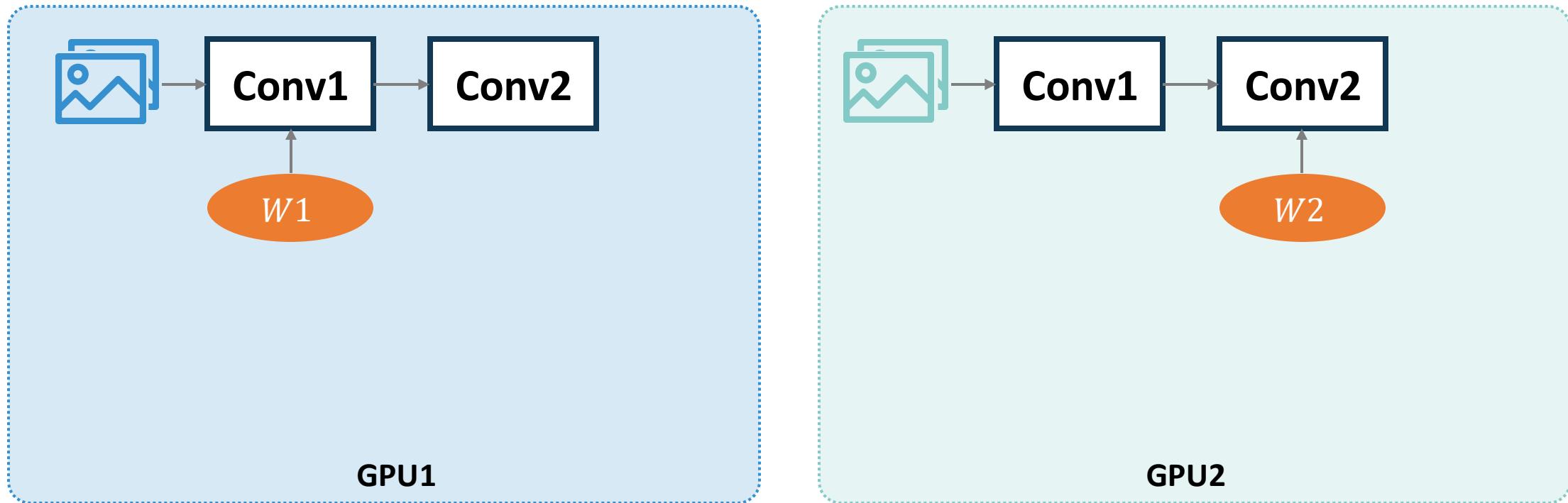
ZeRO Stage 3: Partitioning Parameters

- In data parallel training, all GPUs keep **all** parameters during training



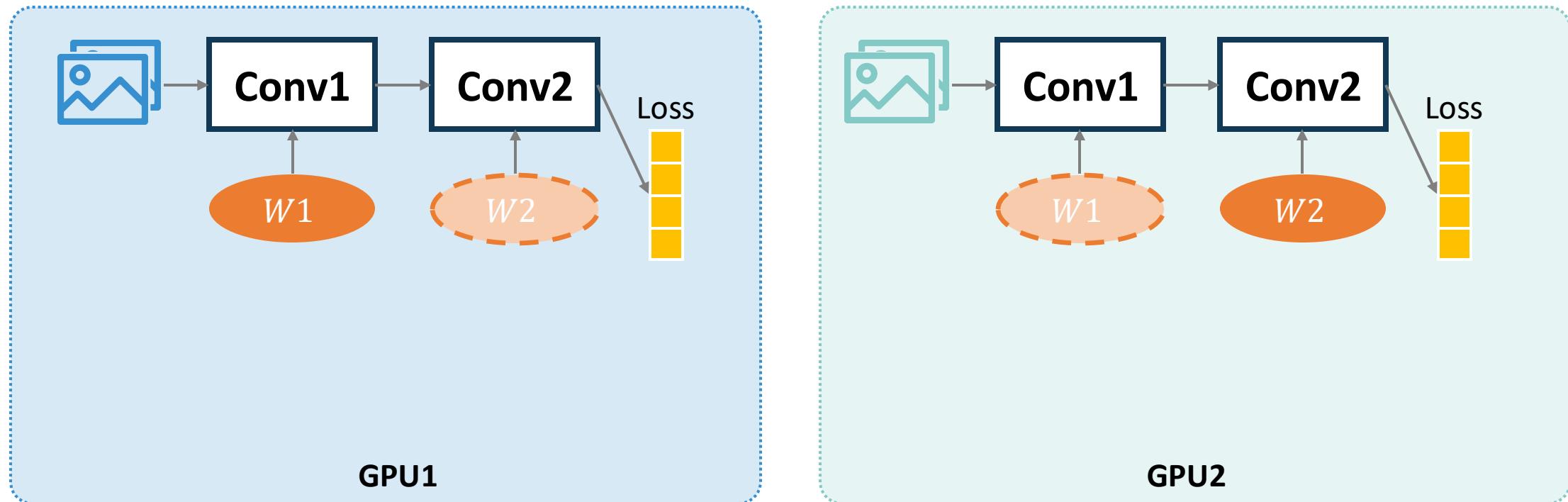
ZeRO Stage 3: Partitioning Parameters

- In ZeRO, model parameters are partitioned across GPUs



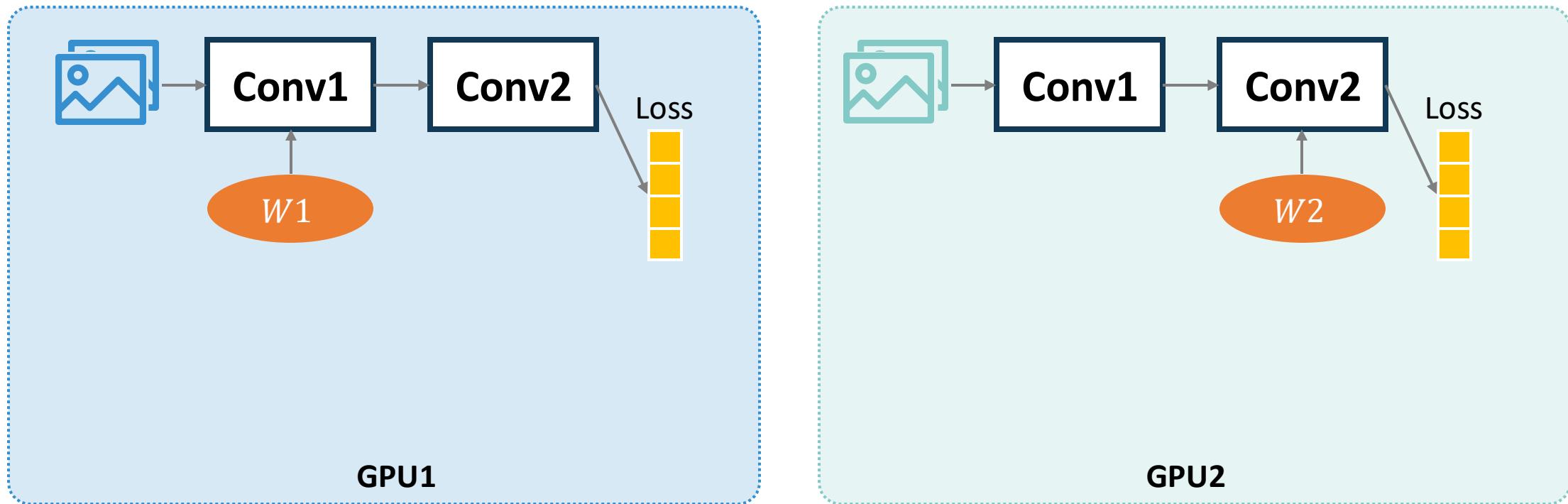
ZeRO Stage 3: Partitioning Parameters

- In ZeRO, model parameters are partitioned across GPUs
- GPUs broadcast their parameters during forward



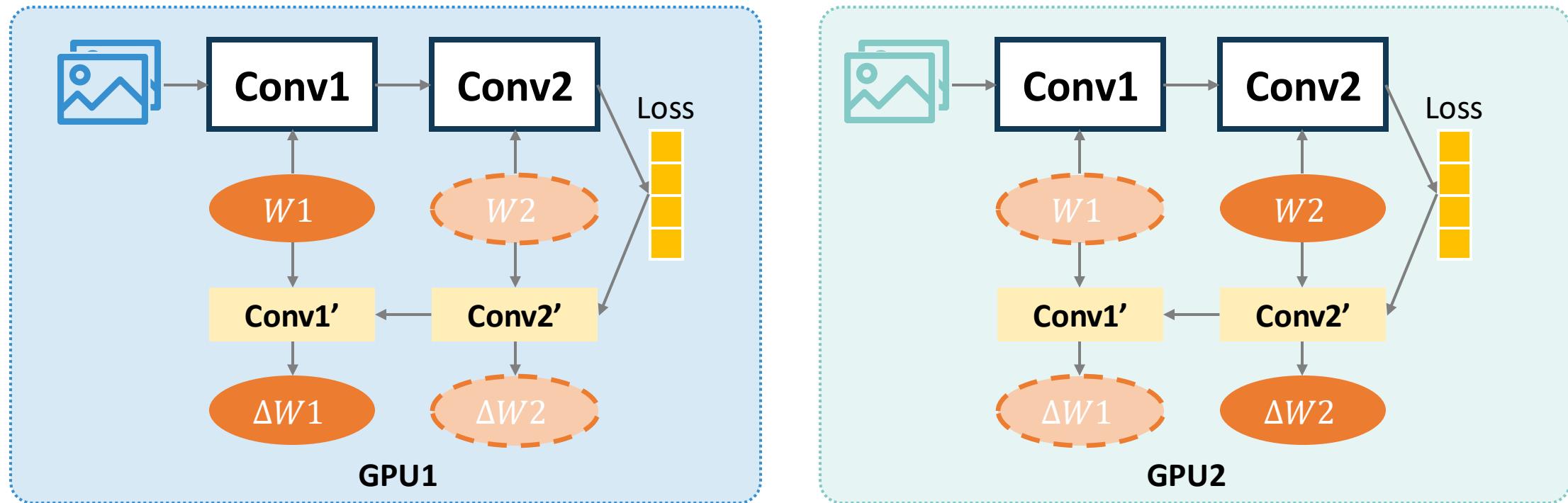
ZeRO Stage 3: Partitioning Parameters

- In ZeRO, model parameters are partitioned across GPUs
- Parameters are discarded right after use



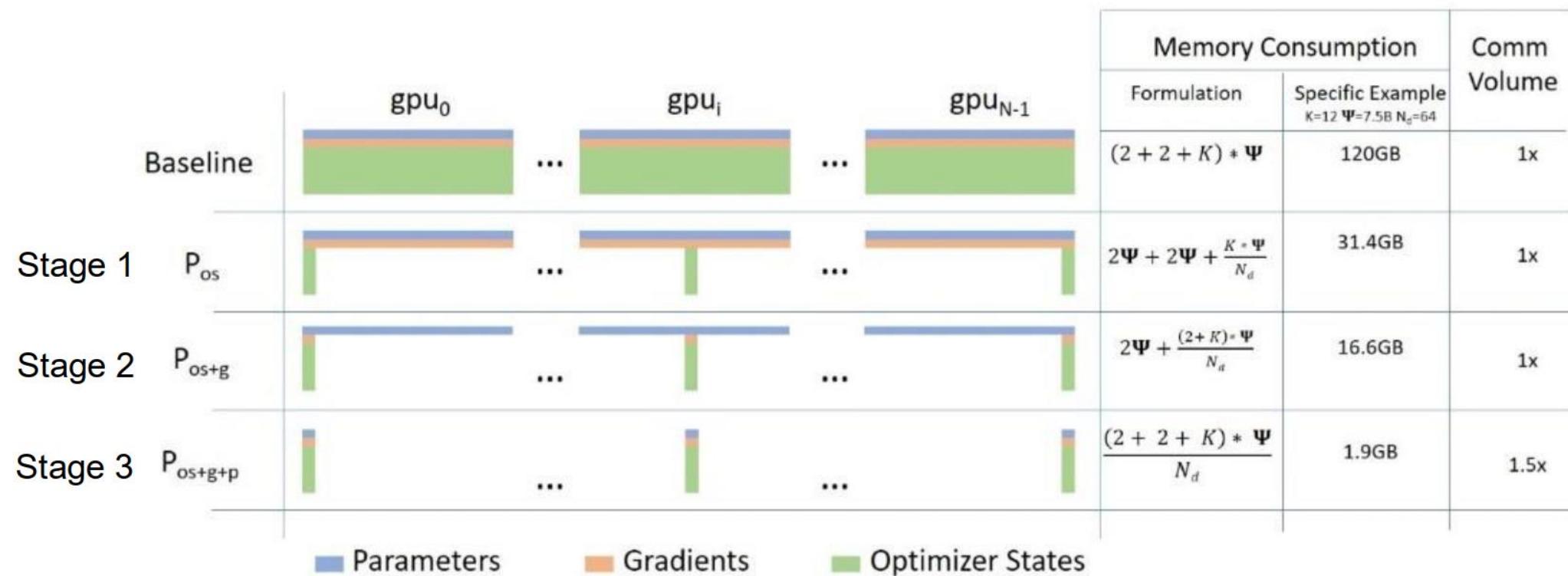
ZeRO Stage 3: Partitioning Parameters

- In ZeRO, model parameters are partitioned across GPUs
- GPUs broadcast their parameters again during backward



ZeRO: Zero Redundancy Optimizer

- ZeRO has three different stages
- Progressive memory savings and communication volume



Acknowledgement

The development of this course, including its structure, content, and accompanying presentation slides, has been significantly influenced and inspired by the excellent work of instructors and institutions who have shared their materials openly. We wish to extend our sincere acknowledgement and gratitude to the following courses, which served as invaluable references and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by **Tianqi Chen** and **Zhihao Jia** at **CMU**.
- Advanced Topics in Machine Learning (Systems)[CS6216], by **Yao Lu** at **NUS**

While these materials provided a foundational blueprint and a wealth of insightful examples, all content herein has been adapted, modified, and curated to meet the specific learning objectives of our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely our own responsibility. We are profoundly grateful for the contributions of the educators listed above, whose dedication to teaching and knowledge-sharing has made the creation of this course possible.

System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute
