
Siyuan Feng

Shanghai Innovation Institute

System for Artificial Intelligence

Parallelization and Training II

Recap: Data Parallelism

2

ML Model

Training Dataset

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗 𝑤𝑖

1. Partition training data into batches 2. Compute the gradients of
each batch on a GPU

3. Aggregate gradients
across GPUs

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Recap: An Issue with Data Parallelism

• Each GPU saves a replica of the

entire model

• Cannot train large models that

exceed GPU device memory

3

Model Parallelism

• Split a model into multiple subgraphs and assign them to different

devices

4

ML Model

Training Dataset

Model
Parallelism

GPU 1

GPU 2

Transfer
intermediate
results
between
devices

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛
෍

𝑗=1

𝑛

∇𝐿𝑗 𝑤𝑖

How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism

5

Tensor Model Parallelism

• Partition parameters/gradients within
a layer

6

GPU 1

GPU 2

GPU 1

GPU 2

y1 X W1 x1y1

W1

y2 X W2 x2y2
W2

Tensor Model Parallelism (partition output) Tensor Model Parallelism (reduce output)
𝑦 = 𝑦1 + 𝑦2

y X W

parameters inputoutput

Comparing Data and Tensor Model Parallelism

7

GPU 1

GPU 2

y1
W

x1

y2

W
x2

Data parallelism 𝑦 = 𝑊𝑥

Communication Cost of Data Parallelism

y X W

B

2

Cout

Cin

B

Cout Cin
Cout

CinB

Forward
Processing

Backward
Propagation

Gradients Sync

0 0 𝑂(𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛)

Comparing Data and Tensor Model Parallelism

8

GPU 1

GPU 2

y1 X W1

y2 X W2

Tensor Model Parallelism (partition output)

Communication Cost of Tensor Model Parallelism

y X W

B

Cout

Cin

B

Cout Cin
Cout

CinB

Forward
Processing

Backward
Propagation

Gradients Sync

𝑂(𝐵 ∗ 𝐶𝑖𝑛) 𝑂(𝐵 ∗ 𝐶𝑖𝑛) 0

Cin

Comparing Data and Tensor Model Parallelism

9

GPU 1

GPU 2

x1y1

W1

W2

y2 X2

Tensor Model Parallelism (Reduce output)
𝑦 = 𝑦1 + 𝑦2

Communication Cost of Tensor Model Parallelism

y X WB

Cout Cin
Cout

CinB

Forward
Processing

Backward
Propagation

Gradients Sync

𝑂(𝐵 ∗ 𝐶𝑜𝑢𝑡) 𝑂(𝐵 ∗ 𝐶𝑜𝑢𝑡) 0

Comparing Data and Tensor Model Parallelism

• Data parallelism: 𝑂(𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛)

• Tensor model parallelism (partition output): 𝑂(𝐵 ∗ 𝐶𝑖𝑛)

• Tensor model parallelism (reduce output): 𝑂(𝐵 ∗ 𝐶𝑜𝑢𝑡)

• The best strategy depends on the model and underlying machine

10

Combine Data and Model Parallelism

11

Convolution

• Convolve the filter with the image: slide over the image spatially and

compute dot products

12

Parallelizing Convolutional Neural Networks

• Convolutional layers

• 90-95% of the computation

• 5% of the parameters

• Very large intermediate activations

• Fully-connected layers

• 5-10% of the computation

• 95% of the parameters

• Small intermediate activations

13

• Discussion: how to parallelize CNNs?

Data parallelism

Tensor model parallelism

Parallelizing Convolutional Neural Networks

• Data parallelism for convolutional layers

• Tensor model parallelism for fully-connected layers

14

Example: Parallelizing Transformers

• Transformer: attention mechanism for language understanding

15

Ashish Vaswani et. al. Attention is all you need.

A Single Transformer Layer

16

Fully-Connected Layers

Self-Attention Layers

Parallelizing Fully-Connected Layers in Transformers

17

𝑋 𝑓

𝑋

𝑋

𝑋𝐴1

𝑋𝐴2

G
eLU

G
eLU

𝑌1

𝑌2

𝑌1𝐵1

𝑌2𝐵2

𝑍1

𝑍2

ҧ𝑓

D
ro

p
o

u
t

𝑍

𝑌 = GeLU 𝑋𝐴 𝑍 = Dropout 𝑌𝐵

𝐴 = 𝐴1, 𝐴2 𝐵 =
B1

B2

Tensor model parallelism
(partition output)

Tensor model parallelism
(reduce output)

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

𝒀 = GeLU 𝑿𝑨
𝒁 = Dropout 𝒀𝑩identity layer reduction layer

Parallelizing Self-Attn Layers in Transformers

18

𝑋 𝑓

𝑋

𝐾1

𝑌1

𝑄1

𝑉1

So
ftm

ax

𝒀 = SelfAttention 𝑿

𝑄 = 𝑄1, 𝑄2 𝐾 = 𝐾1, 𝐾2 𝑉 = 𝑉1, 𝑉2

Split on head dim

𝑌1𝐵1

𝑌2𝐵2

𝑍1

𝑍2

ҧ𝑓

D
rop

o
ut

𝑍

𝒁 = Dropout 𝒀𝑩

𝐵 =
B1

B2

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.
D

rop
o

ut

𝑋

𝑉2

𝑌1

𝑄2

𝐾2

So
ftm

ax

D
rop

o
ut

Tensor Parallelism for Transformer Layer

19

Where 𝑓 is identity operation while ҧ𝑓(𝑔 in prev slides) is all-reduce

Norm is not parallelized

Sequence Parallelism

20

Where 𝑔 is all-gather in forward pass while ҧ𝑔 is reduce-scatter

Parallelizing Transformers

21

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Scale to 512 GPUs by combining data and model parallelism

How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism

22

An Issue with Model Parallelism

• Under-utilization of compute resources

• Low overall throughput due to resource utilization

23

Pipeline Model Parallelism

• Mini-batch: the number

of samples processed in
each iteration

24

• Divide a mini-batch into

multiple micro-batches

• Pipeline the forward and

backward computations
across micro-batches

Pipeline Model Parallelism: Device Utilization

• 𝑚 : micro-batches in a mini-batch

• 𝑝: number of pipeline stages

• All stages take 𝑡𝑓/ 𝑡𝑏 to process a forward (backward) micro-batch

25

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ 𝒕𝒇 + 𝒕𝒃

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝒑 − 𝟏

𝒎

Improving Pipeline Parallelism Efficiency

• 𝑚 : number of micro-batches in a mini-batch

• Increase mini-batch size or reduce micro-batch size

• Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes reduce GPU utilization

26

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ 𝒕𝒇 + 𝒕𝒃

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝒑 − 𝟏

𝒎

• 𝑝: number of pipeline stages

• Decrease pipeline depth

• Caveat: increase stage size

Pipeline Model Parallelism: Memory Requirement

• An issue: we need to keep the intermediate activations of all

microbatches before back propagation

27

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Can we improve the pipeline schedule to reduce memory requirement?

Pipeline Parallelism with 1F1B Schedule

• One-Forward-One-Backward in the steady state

• Limit the number of in-flight micro-batches to the pipeline depth

• Reduce memory footprint of pipeline parallelism

• Doesn’t reduce pipeline bubble

28

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Can we reduce pipeline bubble?

Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

Pipeline Parallelism with Interleaved 1F1B Schedule

• Further divide each stage into 𝑣 sub-stages

• The forward (backward) time of each sub-stage is
𝑡𝑓

𝑣

𝑡𝑏

𝑣

29

Reduce bubble time at the cost increased communication

Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second chunk.

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗

𝒕𝒇 + 𝒕𝒃

𝒗
𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃

=
𝟏

𝒗
∗

𝒑 − 𝟏

𝒎

Pipeline Parallelism with Interleaved 1F1B Schedule

30

Pipeline parallelism with 1F1B
Schedule

Pipeline parallelism with
interleaved 1F1B Schedule

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏

𝒎

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝟏

𝒗
∗

𝒑 − 𝟏

𝒎

Zero Bubble Pipeline Parallelism

31

Zero Bubble Pipeline Parallelism

32

1F1B

ZB1P

ZB2P

Zero Bubble Pipeline Parallelism

33

ZBV

Combine Zero Bubble and Interleaved 1F1B

Zero Bubble Summary

1F1B ZB1P ZB2P ZBV

Bubble Rate
𝑝 − 1

𝑚 + 𝑝 − 1
= 𝐵

𝐵

3
0 0

Activation Memory
(Compared to 1F1B)

1x 1x 2x 1x

Pipeline Communication Volume
(Compared to 1F1B)

1x 1x 1x 2x

34

• 𝑝: number of pipeline stages
• 𝑚: number of microbatches
• Assuming 𝑇𝐹 = 𝑇𝐵 = 𝑇𝑊

Summary: Comparing Data/Tensor Model/Pipeline
Model Parallelism

35

Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

◆ Massively parallelizable
◆ Require no communication during

forward/backward

◆ Support training large models
◆ Efficient for models with large

numbers of parameters

◆ Support large-batch training
◆ Efficient for deep models

◼ Do not work for models that
cannot fit on a GPU

◼ Do not scale for models with large
numbers of parameters

◼ Limited parallelizability; cannot scale
to large numbers of GPUs

◼ Need to transfer intermediate
results in forward/backward

◼ Limited utilization: bubbles in
forward/backward

Pros

Cons

Summary: Comparing Data/Tensor Model/Pipeline
Model Parallelism

36

Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

◆ Massively parallelizable
◆ Require no communication during

forward/backward

◆ Support training large models
◆ Efficient for models with large

numbers of parameters

◆ Support large-batch training
◆ Efficient for deep models

◼ Do not work for models that
cannot fit on a GPU

◼ Do not scale for models with large
numbers of parameters

◼ Limited parallelizability; cannot scale
to large numbers of GPUs

◼ Need to transfer intermediate
results in forward/backward

◼ Limited utilization: bubbles in
forward/backward

Pros

Cons

Training large models requires combining data/model/pipeline
and other parallelization techniques

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and

institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely

our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

37

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1
	Slide 2: Recap: Data Parallelism
	Slide 3: Recap: An Issue with Data Parallelism
	Slide 4: Model Parallelism
	Slide 5: How to parallelize DNN Training?
	Slide 6: Tensor Model Parallelism
	Slide 7: Comparing Data and Tensor Model Parallelism
	Slide 8: Comparing Data and Tensor Model Parallelism
	Slide 9: Comparing Data and Tensor Model Parallelism
	Slide 10: Comparing Data and Tensor Model Parallelism
	Slide 11: Combine Data and Model Parallelism
	Slide 12: Convolution
	Slide 13: Parallelizing Convolutional Neural Networks
	Slide 14: Parallelizing Convolutional Neural Networks
	Slide 15: Example: Parallelizing Transformers
	Slide 16: A Single Transformer Layer
	Slide 17: Parallelizing Fully-Connected Layers in Transformers
	Slide 18: Parallelizing Self-Attn Layers in Transformers
	Slide 19: Tensor Parallelism for Transformer Layer
	Slide 20: Sequence Parallelism
	Slide 21: Parallelizing Transformers
	Slide 22: How to parallelize DNN Training?
	Slide 23: An Issue with Model Parallelism
	Slide 24: Pipeline Model Parallelism
	Slide 25: Pipeline Model Parallelism: Device Utilization
	Slide 26: Improving Pipeline Parallelism Efficiency
	Slide 27: Pipeline Model Parallelism: Memory Requirement
	Slide 28: Pipeline Parallelism with 1F1B Schedule
	Slide 29: Pipeline Parallelism with Interleaved 1F1B Schedule
	Slide 30: Pipeline Parallelism with Interleaved 1F1B Schedule
	Slide 31: Zero Bubble Pipeline Parallelism
	Slide 32: Zero Bubble Pipeline Parallelism
	Slide 33: Zero Bubble Pipeline Parallelism
	Slide 34: Zero Bubble Summary
	Slide 35: Summary: Comparing Data/Tensor Model/Pipeline Model Parallelism
	Slide 36: Summary: Comparing Data/Tensor Model/Pipeline Model Parallelism
	Slide 37: Acknowledgement
	Slide 38: Thanks

