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' Recap: Data Parallelism
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1. Partition training data into batches 2. Compute the gradients of 3. Aggregate gradients
each batch on a GPU across GPUs A
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Recap: An Issue with Data Parallelism

* Each GPU saves a replica of the
entire model

* Cannot train large models that
exceed GPU device memory
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* Split a model into multiple subgraphs and assign them to different
devices
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e Data parallelism
* Model parallelism
* Tensor model parallelism

* Pipeline model parallelism
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' Tensor Model Parallelism

* Partition parameters/gradients within

Tensor Model Parallelism (partition output) Tensor Model Parallelism (reduce output)
y=y1l+1y2
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Forward Backward :
: . Gradients Sync
Processing Propagation

0 0 O(Cout * Cin)

Communication Cost of Data Parallelism
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Forward Backward :
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O(B * Cin) O(B * Cin) 0

Communication Cost of Tensor Model Parallelism
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Tensor Model Parallelism (partition output) .
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Cin COut

Forward Backward :
: . Gradients Sync
Processing Propagation

O(B * Cout) O(B * Cout) 0

Communication Cost of Tensor Model Parallelism

Tensor Model Parallelism (Reduce output)
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Comparing Data and Tensor Model Parallelism

e Data parallelism: O(Cout * Cin)
* Tensor model parallelism (partition output): O(B * Cin)

* Tensor model parallelism (reduce output): O(B * Cout)

* The best strategy depends on the model and underlying machine
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Model parallelism

A

Machine 1
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Machine 2

| Machine 3

Data parallelism

Workload partitioning

Machine 4
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* Convolve the filter with the image: slide over the image spatially and

compute dot products
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Convolution filter
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* Convolutional layers
* 90-95% of the computation
* 5% of the parameters Data parallelism

* Very large intermediate activations

* Fully-connected layers

e 5-10% of the computation .
’ P Tensor model parallelism

* 95% of the parameters

 Small intermediate activations

* Discussion: how to parallelize CNNs?

AN
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* Data parallelism for convolutional layers

* Tensor model parallelism for fully-connected layers

Model parallelism:

3 all workers train on same batch;
‘g e workers communicate as frequently as s
: M

4 Data parallelism: &
e each worker trains the same
o convolutional layers on a different
2 data batch.
9 “ 4
=
O
o

Worker 1 - nan Worker K
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* Transformer: attention mechanism for language understanding

Output
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Ashish Vaswani et. al. Attention is all you need.



' A Single Transformer Layer

Fully-Connected Layers

Self-Attention Layers

r
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Parallelizing Fully-Connected Layers in Transformers ’ L s ol 8] ZF bk
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_ _ Y = GeLU(XA) _
identity layer 7 — Dropout(YB) reduction layer
( Y = GeLU(XA) Vo Z = Dropout(Y
o B
DX (2| XA, |2| 2|2 | M| 5= 1B |2 74>
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_________________________________________________________________________________________________________

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 7
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Parallelizing Self-Attn Layers in Transformers f A o
:", Y = SelfAttention(X) :
'::)M' L ' Z = Dropout(YB)
DX 66 R | 3
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B
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________________________________________________

Q= [Q1» Qz] K = [K1»K2] V= [V1» Vz]
Split on head dim

_______________________________________________________________

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.
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Where f is identity operation while f(g in prev slides) is all-reduce

Norm is not parallelized




Sequence Parallelism
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Where g is all-gather in forward pass while g is reduce-scatter
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Parallelizing Transformers L ig 8l & 2 Iz
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m Model Parallel ® Model + Data Parallel

100%
100%
o0 80% 95% i -
= 82%
— % 79%
S 60% £ 74%
¥
E 40%
< 20%
0%
1 2 4 8 64 128 256 512

Number of GPUS

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.
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e Data parallelism

* Model parallelism

* Tensor model parallelism

* Pipeline model parallelism
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e Under-utilization of compute resources

* Low overall throughput due to resource utilization

Worker 1

Worker 1 w§§§ 4L w§
Worker 2 Worker 2 w§ . w§
Worker 3 o & 1\ 1 ﬁ

Worker 4 1(1 && NN
Worker 4 Time

Forward Backward -
- Pass : Pass N Idle
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Pipeline Model Parallelism

* Mini-batch: the number
of samples processed in
each iteration

* Divide a mini-batch into
multiple micro-batches

 Pipeline the forward and
backward computations
across micro-batches

Worker 1
Worker 2

Worker 3

Worker 4

Worker 1
Worker 2
Worker 3
Worker 4

€ rmomen
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Nodcl P arallelism

\ | N
- N\

NN Idle

Pipeline Model Parallelism
All inputs use weights from last flush

Pipeline flush:
add gradients
11 3 nn
1/1(2]2
. N R S soaes.
1 §\\§\
JEEEEBEEN YYNNNNNY
>
Time

B Forward Pass | Backward Pass N 1dle

V o
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Pipeline Model Parallelism: Device Utilization  ¢* £ 5 & & = i
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e m : micro-batches in a mini-batch

* p: number of pipeline stages

* All stages take tf/ t, to process a forward (backward) micro-batch

mxty (p—1)*(tr+tp) m=tp

ga—
Device1 HEFEEELEA:

Device 2 12345678 910111213141516
p -

DeVicES 12345678 9107111213141516 a
__Devicre:i 123456780 91011121314151&uﬁ

Time Devices idle

B Forward Pass Backward Pass
_ p—-1)*(tr+t) p-—-1
BubbleFraction = / =
m * tf +m x tb m

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
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Improving Pipeline Parallelism Efficiency "

* m : number of micro-batches in a mini-batch
* |ncrease mini-batch size or reduce micro-batch size

* Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes reduce GPU utilization

* p: number of pipeline stages
* Decrease pipeline depth

* Caveat: increase stage size
mxty (p—1)*(tp+tp) mxty

A
" Devicel REERELEL 1 (2|3 |4 5|6 |7 |8 ERFERFAEIESEIL
Device 2 12345678 2|(3(4|5|6 |7 |8 910111213141516
P Device 3 12345678 3|45 |6/|7 9 10111213141516 ﬂ
__Device 4 12345678 4|5|6|7 |8 ?10111213141516nﬁ

Devices idle

B Forward Pass [ ] Backward Pass
p-D=*(tr+t,) p-1

Time

BubbleFraction =
mxty+ mxty m - \
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
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Pipeline Model Parallelism: Memory Requirement ~ ¢* L 5 8 & =
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* An issue: we need to keep the intermediate activations of all
microbatches before back propagation

Pipeline flush
Device 1 BEWFEEENIEA: 4 |5 |6]|7 910111213141516
Device 2 12345678 5|6 |7 |8 910111213141516
Device 3 12345678 6 | 7 9 10111213141516 H
Device 4 12345678 7 |8 91011121314151anm
Time Devices idle
B rorward Pass Backward Pass

Can we improve the pipeline schedule to reduce memory requirement?

27
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism l
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* One-Forward-One-Backward in the steady state
* Limit the number of in-flight micro-batches to the pipeline depth
 Reduce memory footprint of pipeline parallelism

* Doesn’t reduce pipeline bubble

Can we reduce pipeline bubble?

# in-flight mciro-batches = & Pipelineflush

Devicel EEFERELEA 1|23 (45 ,\_i'_lll 9 10111213141516

Device 2 123456738 8 2 9 10111213141516 Device 1 REIER

Device 3 VES4987Y 6 A 9 1011213141516 Dev?cez

Device 4 12 o o111 9| Device 3
Device 4

Devices idle -
B rorward Pass Backward Pass

Time

Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
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Pipeline Parallelism with Interleaved 1F1B Schedule * Lt & € & = i
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* Further divide each stage into v sub-stages

: . tr(t
* The forward (backward) time of each sub-stage is ?f (f)
Device 1 - : 10]2(s/3lea W s(s] [: RR o0 Y SCYMERIMEPIH o M1
Device 2 - 10213l s A s 67| ERRAYIEH. o WroM11 {2 R AT
Device 3 41 11421314 RE 475 8l 6 [| 7 | s EHCIRAK: 91 9 |110M11 12 HEIBRTY RYRFY 13
Device 4 111 [2{ 2 (3] 3 o] 4 ERIC WU 5 6/ 6 (77 8] 8 Mol o |1110[3111 12 HEWRTRETE: 1aa{llral

Time

Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second chunk.

(¢ + tp)

R p—1
m

1
BubbleFraction = = 1—) *

m*tf+m*tb

Reduce bubble time at the cost increased communication

V o



Pipeline parallelism with 1F1B

Schedule

p—1

BubbleFraction = ——
m

Pipeline parallelism with
interleaved 1F1B Schedule
1 p-1

BubbleFraction = — x
v m

Pipeline Parallelism with Interleaved 1F1B Schedule " L i3 el &8 F bk
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Device 1
Device 2
Device 3
Device 4
Time ——— ) .
Assign multiple stages

l to each device
Device 1 102364 s|6|7|8 : _ 9 Bz
Device 2 123 f]s WsNe|7|8 o HioHn Hiz!
Device 3 - 123+ RE sig6f7|8 : * 9 MM Hz 13
Device 4 11 f2)2 5| 3 |4 4 sl slsi 677 [se Il o [l10]111212 M08 13[314
Time

B rForward Pass [ | Backward Pass

V o
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Forward Backward
L3
X
VL
v
w
— Wx wTv,L
h
N x 2 v,L x N
: V.L VwL
do(z z w
o (2) Zi)VyL | v,LxT
A
y
i V,L




g el 8 F bk

Shanghai Innovation Institute

Zero Bubble Pipeline Parallelism

1F1B

Device 1

Device 2

Device 3

Device 4

Time —

Optimizer step

/B1P

Device 1

Device 2

Device 3

Device 4

Time —

/B2P

Device 1
Device 2

Device 3

Device 4

Time —

Optimizer step
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BV

Device 1

Device 2

Device 3

Device 4

Device 1 [l R i : 22 G 55667788-1234567
Device 2 822 <181 8678-12345 6
Device 3 722 S ird i8] S 86 78-123 4.5

Device 4 16122 sCel7les s 7 s 23 4
Time —
Chunk 0 1 Chunk 0 Chunk 0 1 .
Chunk 1 . F Chunk 1 - B Chunk 1 . w Optimizer step

Combine Zero Bubble and Interleaved 1F1B
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Zero Bubble Summary
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p—1 B

Bubble Rate =B B} 0 0
m+p—1 3
Activation Memory
1 1 2 1
(Compared to 1F1B) " " ' X
Pipeline Communication Volume 1x 1x 1x 2X

(Compared to 1F1B)

* p: number of pipeline stages
* m: number of microbatches
* AssumingT, = TB = TW
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o e e
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ML Model
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Training Dataset

Pros

Cons
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ML Model Model
Parallelism

Training Dataset

GPU1
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GPU 2
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FH]FII| HII B'IJ B'Il Bﬂ.l

F! L

Far Fas

Fus

Faz

Fir Fua

Faa

e
Faa Bis | Baz | Bay | Bas gt
Bia | Bir | B | B Lpame
Bubble Bar | Bez | Ban  Bae | Updeie
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Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

\ 4
\ 4

Massively parallelizable
Require no communication during
forward/backward

Do not work for models that
cannot fit on a GPU

Do not scale for models with large
numbers of parameters

\ 4
\ 4

Support training large models
Efficient for models with large
numbers of parameters

Limited parallelizability; cannot scale

to large numbers of GPUs
Need to transfer intermediate
results in forward/backward

€ Support large-batch training
& Efficient for deep models

B Limited utilization: bubbles in
forward/backward

Pr
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SN r——————-f—.—\—-‘— ————————————————————————————————————— =] I— e e e e e e
o e | !
‘:;.Mo;‘.l‘;” : o o ° ° ° ° ° : \pcaie
- Training large models requires combining data/model/pipeline § -
> and other parallelization techniques SIS
Training Dataset “= :'” Ber B _"""“"
R D e e B 7 -
Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism
L 2 Mass!vely parallellza!ole. - L 2 Support training Iarge-models O Surapeit el tralin
Pros € Require no communication during €@ Efficient for models with large .
& Efficient for deep models
forward/backward numbers of parameters
B Do not work for models that B Limited parallelizability; cannot scale
cons cannot fit on a GPU to large numbers of GPUs B Limited utilization: bubbles in
B Do not scale for models with large B Need to transfer intermediate forward/backward
numbers of parameters results in forward/backward

V o
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