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Recap: Data Parallelism
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each batch on a GPU
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Recap: An Issue with Data Parallelism

• Each GPU saves a replica of the

entire model

• Cannot train large models that

exceed GPU device memory
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Model Parallelism

• Split a model into multiple subgraphs and assign them to different

devices
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How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism
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Tensor Model Parallelism

• Partition parameters/gradients within
a layer
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Comparing Data and Tensor Model Parallelism

7

GPU 1

GPU 2

y1
W

x1

y2

W
x2

Data parallelism             𝑦 = 𝑊𝑥

Communication Cost of Data Parallelism 

y X W

B

2

Cout

Cin

B

Cout Cin
Cout

CinB

Forward 
Processing

Backward 
Propagation

Gradients Sync

0 0 𝑂(𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛)



Comparing Data and Tensor Model Parallelism
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Comparing Data and Tensor Model Parallelism
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Comparing Data and Tensor Model Parallelism

• Data parallelism: 𝑂(𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛)

• Tensor model parallelism (partition output): 𝑂(𝐵 ∗ 𝐶𝑖𝑛)

• Tensor model parallelism (reduce output): 𝑂(𝐵 ∗ 𝐶𝑜𝑢𝑡)

• The best strategy depends on the model and underlying machine
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Combine Data and Model Parallelism
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Convolution

• Convolve the filter with the image: slide over the image spatially and

compute dot products
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Parallelizing Convolutional Neural Networks

• Convolutional layers

• 90-95% of the computation

• 5% of the parameters

• Very large intermediate activations

• Fully-connected layers

• 5-10% of the computation

• 95% of the parameters

• Small intermediate activations
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• Discussion: how to parallelize CNNs?

Data parallelism

Tensor model parallelism



Parallelizing Convolutional Neural Networks

• Data parallelism for convolutional layers

• Tensor model parallelism for fully-connected layers
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Example: Parallelizing Transformers

• Transformer: attention mechanism for language understanding
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Ashish Vaswani et. al. Attention is all you need.



A Single Transformer Layer
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Fully-Connected Layers

Self-Attention Layers



Parallelizing Fully-Connected Layers in Transformers
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Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

𝒀 = GeLU 𝑿𝑨
𝒁 = Dropout 𝒀𝑩identity layer reduction layer 



Parallelizing Self-Attn Layers in Transformers
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Tensor Parallelism for Transformer Layer
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Where 𝑓 is identity operation while ҧ𝑓(𝑔 in prev slides) is all-reduce

Norm is not parallelized



Sequence Parallelism
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Where 𝑔 is all-gather in forward pass while ҧ𝑔 is reduce-scatter



Parallelizing Transformers
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Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Scale to 512 GPUs by combining data and model parallelism



How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism
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An Issue with Model Parallelism

• Under-utilization of compute resources

• Low overall throughput due to resource utilization
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Pipeline Model Parallelism

• Mini-batch: the number 

of samples processed in 
each iteration 
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• Divide a mini-batch into 

multiple micro-batches

• Pipeline the forward and 

backward computations 
across micro-batches 



Pipeline Model Parallelism: Device Utilization

• 𝑚 : micro-batches in a mini-batch

• 𝑝: number of pipeline stages

• All stages take 𝑡𝑓/ 𝑡𝑏 to process a forward (backward) micro-batch
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GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ 𝒕𝒇 + 𝒕𝒃

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝒑 − 𝟏

𝒎



Improving Pipeline Parallelism Efficiency

• 𝑚 : number of micro-batches in a mini-batch

• Increase mini-batch size or reduce micro-batch size

• Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes reduce GPU utilization
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GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ 𝒕𝒇 + 𝒕𝒃

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝒑 − 𝟏

𝒎

• 𝑝: number of pipeline stages

• Decrease pipeline depth

• Caveat: increase stage size



Pipeline Model Parallelism: Memory Requirement

• An issue: we need to keep the intermediate activations of all

microbatches before back propagation
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GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Can we improve the pipeline schedule to reduce memory requirement?



Pipeline Parallelism with 1F1B Schedule

• One-Forward-One-Backward in the steady state

• Limit the number of in-flight micro-batches to the pipeline depth

• Reduce memory footprint of pipeline parallelism

• Doesn’t reduce pipeline bubble
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GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Can we reduce pipeline bubble?

Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule



Pipeline Parallelism with Interleaved 1F1B Schedule

• Further divide each stage into 𝑣 sub-stages

• The forward (backward) time of each sub-stage is
𝑡𝑓

𝑣

𝑡𝑏

𝑣
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Reduce bubble time at the cost increased communication

Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second chunk.
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Pipeline Parallelism with Interleaved 1F1B Schedule
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Pipeline parallelism with 1F1B
Schedule
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Zero Bubble Pipeline Parallelism
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Zero Bubble Pipeline Parallelism
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1F1B
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Zero Bubble Pipeline Parallelism
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ZBV

Combine Zero Bubble and Interleaved 1F1B



Zero Bubble Summary

1F1B ZB1P ZB2P ZBV

Bubble Rate
𝑝 − 1

𝑚 + 𝑝 − 1
= 𝐵

𝐵

3
0 0

Activation Memory
(Compared to 1F1B)

1x 1x 2x 1x

Pipeline Communication Volume
(Compared to 1F1B)

1x 1x 1x 2x
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• 𝑝: number of pipeline stages
• 𝑚: number of microbatches
• Assuming 𝑇𝐹 =  𝑇𝐵 =  𝑇𝑊



Summary: Comparing Data/Tensor Model/Pipeline 
Model Parallelism

35

Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

◆ Massively parallelizable
◆ Require no communication during 

forward/backward

◆ Support training large models 
◆ Efficient for models with large 

numbers of parameters

◆ Support large-batch training
◆ Efficient for deep models

◼ Do not work for models that 
cannot fit on a GPU

◼ Do not scale for models with large 
numbers of parameters

◼ Limited parallelizability; cannot scale 
to large numbers of GPUs 

◼ Need to transfer intermediate 
results in forward/backward

◼ Limited utilization: bubbles in 
forward/backward

Pros

Cons



Summary: Comparing Data/Tensor Model/Pipeline 
Model Parallelism
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Data Parallelism Tensor Model Parallelism Pipeline Model Parallelism

◆ Massively parallelizable
◆ Require no communication during 

forward/backward

◆ Support training large models 
◆ Efficient for models with large 

numbers of parameters

◆ Support large-batch training
◆ Efficient for deep models

◼ Do not work for models that 
cannot fit on a GPU

◼ Do not scale for models with large 
numbers of parameters

◼ Limited parallelizability; cannot scale 
to large numbers of GPUs 

◼ Need to transfer intermediate 
results in forward/backward

◼ Limited utilization: bubbles in 
forward/backward

Pros

Cons

Training large models requires combining data/model/pipeline
and other parallelization techniques
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System for Artificial Intelligence
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