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MoE and Expert Parallelism
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Recap: Transformer Block

* A typical transformer block :
Z = SelfAttention(XW,, XWy, XW;)
Z = LayerNorm(X + Z)
H = LayerNorm((GeLU(ZW,)®©ZW,)W5 + Z)

e (multi-head) self-attention, followed by a linear
layer and RelLU and some additional residual
connections and normalization
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Standard Feed Forward Layer S 5 el 8 F b
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* H = LayerNorm((GeLU(ZW,) ® ZW,)W;5 + Z)
° ]/[/'1’”/2 = Rnxm’ W3 = Rmxn

* Increasing feature size will increase compute quadratically

* Everything is mixed together in the FFN(feed forward network) layer
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* Key idea: make each expert focus on predicting the right answer for a subset of
cases

e Actual: a kind of model-level sparsity.
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A Closer Look at Mixture-of-Experts f L B8l 82k
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* A typical MoE layer (assume single instance and activate two experts )
* Gating: G = softmax(W;X)

 Expertindices: I = {iy, i;} = TopK(G,k = 2) é
(v N
. Gi Gi MoE layer
* Output weight: sy = 0 g = 1 +
P . 0 GigtGiy 1 Gig+Gi,

Y,

* Output: Y = soFFN; (X) + s;FFN; (X) a0, [0

Expert 1 Expert 3 D DO Expert n

* Greedily select top-K experts among N \_ Network y
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Total communication: 4 X B X § X h bytes for bfloat16 N
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Best Practice for MoE Training " L5 8l &8 % [k
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« Communication (for Bfloat16):
* Pure TP: 4 X B X S X h bytes
* Pure EP (TP size = EP size): 4 X B X § X K X h bytes

* EP + DP Attention: ni X B XS XK X h bytes
dp
* When ng, > K, choose EP will be better than TP.

* For example of DS-V3, K = 8, and training with DP 1024, TP 1 and EP
256.
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Where g is all-gather in forward pass while g is reduce-scatter
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e Attention Block Activations B: batch size

* Input to LayerNorm (before Attention): B % H-P
- P

S:Sequence Length
H+2Hgy

* Input to FlashAttention (Q, K, V): B - S -

H H: Hidden Size
* InputtoLinear:B:-S-—-P
‘ Hyy: GQA hidden size for KV
* MLP Block Activations

* Input to LayerNorm (before MLP): B % H-P

Hiyter: MLP Intermediate Size

* Input to MLP Linear Layers (Up/Gate Projections): B - S - % . p |t:TP/SPworldsize

* Input to Down Projection: B - S -

2Hinter 2, P: Precision (2 for bf16)
t

* Total Memory per Layer: % +B-S-(4H + 2Hygy + 2H; 1) + P

18
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Taking Llama 70B as example

* Memory per Layer: % +B+S-(4H + 2Hyy + 2H; o) + P

- B=1,5 =128k
« H=8192,Hyy = 1024, H,por = 28672

* P =2,t =8numyye = 380

B: batch size
S: Sequence Length

H: Hidden Size
e Totally memory usage is around 225GB

Hyy: GQA hidden size for KV
Can we use larger t to reduce activation memory? Hinter: MLP Intermediate Size

t: TP/ SP world size
Answer is NO, as GQA KV head is only 8.

P: Precision (2 for bf16)
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Where g is all-gather in forward pass while g is reduce-scatter

Activation X is not sharded during attention field
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Recap: Recursive Attention S e
* Pre-softmax “attention score” . _ i 1T
Si = qre;
Vd
i1 €XP(si)V;
s(I) =lo Z exp(s;)),v( =z softmax(s);v; =
() =log() _exp(se) v =) (v ==

* When index set [ = {i}, s({i}) =s; ,v{i}) = v;

* When indexset | = {1,2...t}, v(I)is the final output of the attention

21
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) - _ 2ier exp(s)v;
s() = log(zia exp(s;)),v(l) = zia softmax(s);v; = exp(s(]))

* For any partition {Ij} of I such that ] = ] 11 , the following relation holds

* s(Uj=1 ) =log( exp( (I ))), v(Uj=41 ;) =X ; softmax([s(1y), s(I3) ...D; v(I})

e Attention computation is communicative and associative and can be done in a

divide-and-conquer fashion. An important property for a lot of system
optimizations

* Discussion: what can we do with this property?

22



' Ring Attention
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' Ring Attention
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' Ring Attention

ol 03 o3 GPU 3

GPU 1

B el &g F Mk

Shanghai Innovation Institute




' Ring Attention
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' Transformer Layer with TP+CP

SIRIE'EN EEE
e

GPUO

GPU1

GPU2

GPU3




N 4

Activation Memory of Context Parallelism ’ Ligel 8 F bk
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e Attention Block Activations

. S

* Input to LayerNorm (before Attention): B vl H-P B: batch size

* Input to FlashAttention (Q, K, V): B % A2 p S: Sequence Length

. S H: Hidden Si
e QOutput of Attention: B 22 p N Sl
¢ t Hyy: GQA hidden size for KV
* MLP Block Activations H;,ter: MLP Intermediate Size
S
* Input to LayerNorm (before MLP): B el H-P t: TP/ SP world size

* Input to MLP Linear Layers (Up/Gate Projections): B % % . P | c:CPworld size

2Hinter p P: Precision (2 for bf16)

- S
* Input to Down Projection: B Sl

* Total Memory per Layer: i +B-S-(4H + 2Hygy + 2H; 1) + P
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' Recap: GPU memory hierarchy

block O

thread O

thread 1

thread 8

Shared memory

Global memory

block 3
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Shared memory: 64 KB per core

GPU memory(Global memory):

RTX3080 10GB
RTX3090 24GB
A100 40/80 GB

AN



' Sources of memory consumption e
A simplified view of a typical computational graph for training, weights are omitted
and implied in the grad steps.

input linear relu linear loss _
Sources of memory consumption

e Model weights

e Optimizer states

¢ Intermediate activation values

linear-grad  relu-grad  linear-grad loss-grad label

Optimizer states

AN
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Activation Memory Cost for Training

v y

input linear relu linear loss
< M-
Imear -grad  relu-grad  linear-grad  loss-grad label

Because the need to keep intermediate value around (checkpoint) for the gradient steps.
Training a N-layer neural network would require O(N) memory.

We will use the following simplified view to combine gradient and forward computation

_— s, s s
— e/  —  —  —
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* Only checkpoint colored nodes (step 0)

* Recompute the missing intermediate nodes in small segments (step 1, 2)
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Sublinear Memory Cost

Shanghai Innovation Institute

Forward computation '—> —>.—> —>'—>

Gradient per segment

with re-computation
" "
Fora N | | network N
Fora N layer neural network, Memory cost = _|_ 0(K) Pick K = VN
if we checkpoint every K layers / \
Checkpoint cost Re-computation cost

N
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