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01
MoE and Expert Parallelism



Recap: Transformer Block 

• A typical transformer block :

𝑍 = SelfAttention 𝑋𝑊𝑄 , 𝑋𝑊𝐾 , 𝑋𝑊𝑉

𝑍 = LayerNorm 𝑋 + 𝑍

𝐻 = LayerNorm( GeLU 𝑍𝑊1 ⨀𝑍𝑊2 𝑊3 + 𝑍)

• (multi-head) self-attention, followed by a linear

layer and ReLU and some additional residual

connections and normalization
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Standard Feed Forward Layer

• 𝐻 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 𝐺𝑒𝐿𝑈 𝑍𝑊1 ⨀𝑍𝑊2 𝑊3 + 𝑍

• 𝑊1,𝑊2 ∈ 𝑅𝑛×𝑚 ,𝑊3 ∈ 𝑅𝑚×𝑛

• Increasing feature size will increase compute quadratically

• Everything is mixed together in the FFN(feed forward network) layer
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Mixture-of-Experts

• Key idea: make each expert focus on predicting the right answer for a subset of

cases

• Actual: a kind of model-level sparsity.
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A Closer Look at Mixture-of-Experts

• A typical MoE layer (assume single instance and activate two experts )

• Gating: 𝐺 = softmax 𝑊𝐺𝑋

• Expert indices: 𝐼 = 𝑖0, 𝑖1 = TopK G, k = 2

• Output weight: 𝑠0 =
𝐺𝑖0

𝐺𝑖0+𝐺𝑖1
, 𝑠1 =

𝐺𝑖1
𝐺𝑖0+𝐺𝑖1

• Output: 𝑌 = 𝑠0𝐹𝐹𝑁𝑖0 𝑋 + 𝑠1𝐹𝐹𝑁𝑖1 𝑋

• Greedily select top-K experts among N
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MoE Training w/ TP+SP
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MoE Training w/ TP+SP
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MoE Training w/ TP+SP
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MoE Training w/ EP
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MoE Training w/ EP
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MoE Training w/ EP
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MoE Training w/ EP + DP
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Best Practice for MoE Training

• Communication (for Bfloat16):

• Pure TP: 4 × 𝐵 × 𝑆 × ℎ bytes

• Pure EP (TP size = EP size): 4 × 𝐵 × 𝑆 × 𝐾 × ℎ bytes

• EP + DP Attention:
4

𝑛𝑑𝑝
× 𝐵 × 𝑆 × 𝐾 × ℎ bytes

• When 𝑛𝑑𝑝 > 𝐾, choose EP will be better than TP.

• For example of DS-V3, 𝐾 = 8, and training with DP 1024, TP 1 and EP

256.
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02
Context Parallelism



Recap: Sequence Parallelism
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Where 𝑔 is all-gather in forward pass while ҧ𝑔 is reduce-scatter



Activation Memory of Sequence Parallelism

• Attention Block Activations

• Input to LayerNorm (before Attention): 𝐵 ∙
𝑆

𝑡
∙ 𝐻 ∙ 𝑃

• Input to FlashAttention (Q, K, V): 𝐵 ∙ 𝑆 ∙
𝐻+2𝐻𝐾𝑉

𝑡
∙ 𝑃

• Input to Linear: 𝐵 ∙ S ∙
𝐻

𝑡
∙ 𝑃

• MLP Block Activations

• Input to LayerNorm (before MLP): 𝐵 ∙
𝑆

𝑡
∙ 𝐻 ∙ 𝑃

• Input to MLP Linear Layers (Up/Gate Projections): 𝐵 ∙ S ∙
𝐻

𝑡
∙ 𝑃

• Input to Down Projection: 𝐵 ∙ S ∙
2𝐻𝑖𝑛𝑡𝑒𝑟

𝑡
∙ 𝑃

• Total Memory per Layer:
1

𝑡
∙ 𝐵 ∙ 𝑆 ∙ 4𝐻 + 2𝐻𝐾𝑉 + 2𝐻𝑖𝑛𝑡𝑒𝑟 ∙ 𝑃
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𝐵: batch size

𝑆: Sequence Length

𝐻: Hidden Size

𝐻𝐾𝑉: GQA hidden size for KV

𝐻𝑖𝑛𝑡𝑒𝑟: MLP Intermediate Size

𝑡: TP / SP world size

𝑃: Precision (2 for bf16)



Taking Llama 70B as example

• Memory per Layer:
1

𝑡
∙ 𝐵 ∙ 𝑆 ∙ 4𝐻 + 2𝐻𝐾𝑉 + 2𝐻𝑖𝑛𝑡𝑒𝑟 ∙ 𝑃

• 𝐵 = 1, 𝑆 = 128𝑘

• 𝐻 = 8192, 𝐻𝐾𝑉 = 1024, 𝐻𝑖𝑛𝑡𝑒𝑟 = 28672

• 𝑃 = 2, 𝑡 = 8, 𝑛𝑢𝑚𝑙𝑎𝑦𝑒𝑟 = 80

• Totally memory usage is around 225GB
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𝐵: batch size

𝑆: Sequence Length

𝐻: Hidden Size

𝐻𝐾𝑉: GQA hidden size for KV

𝐻𝑖𝑛𝑡𝑒𝑟: MLP Intermediate Size

𝑡: TP / SP world size

𝑃: Precision (2 for bf16)

Can we use larger 𝒕 to reduce activation memory?

Answer is NO, as GQA KV head is only 8.



Recap: Sequence Parallelism
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Where 𝑔 is all-gather in forward pass while ҧ𝑔 is reduce-scatter

Activation 𝑿 is not sharded during attention field



Recap: Recursive Attention 

• Pre-softmax “attention score”

• When index set

• When index set is the final output of the attention
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𝑠𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

𝑠(𝐼) = log(෍
𝑖∈𝐼

exp(𝑠𝑖)) , v(𝐼) = ෍
𝑖∈𝐼

softmax(𝑠)𝑖𝑣𝑖 =
σ𝑖∈𝐼 exp(𝑠𝑖)𝑣𝑖
exp(𝑠(𝐼))

𝐼 = 𝑖  , s 𝑖 = 𝑠𝑖 ,v 𝑖 = 𝑣𝑖

𝐼 = 1,2… 𝑡  , v 𝐼



Recap: Recursive Attention 

• Attention computation is communicative and associative and can be done in a

divide-and-conquer fashion. An important property for a lot of system

optimizations

• Discussion: what can we do with this property?
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𝑠(𝐼) = log(෍
𝑖∈𝐼

exp(𝑠𝑖)) , v(𝐼) = ෍
𝑖∈𝐼

softmax(𝑠)𝑖𝑣𝑖 =
σ𝑖∈𝐼 exp(𝑠𝑖)𝑣𝑖
exp(𝑠(𝐼))

• For any partition 𝐼𝑗 of 𝐼 such that 𝐼 = 𝑗=1ڂ
𝑛 𝐼𝑗 , the following relation holds

• s(ڂ𝑗=1
𝑛 𝐼𝑗) =log σ𝑗 exp 𝑠 𝐼𝑗 , v(ڂ𝑗=1

𝑛 𝐼𝑗) =σ𝑗 softmax 𝑠 𝐼1 , 𝑠 𝐼2 … 𝑗 𝑣(𝐼𝑗)



Ring Attention
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Ring Attention
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Ring Attention
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Ring Attention
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Ring Attention
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Ring Attention
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Transformer Layer with TP+CP
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Activation Memory of Context Parallelism

• Attention Block Activations

• Input to LayerNorm (before Attention): 𝐵 ∙
𝑆

𝑐∙𝑡
∙ 𝐻 ∙ 𝑃

• Input to FlashAttention (Q, K, V): 𝐵 ∙
𝑆

𝑐
∙
𝐻+2𝐻𝐾𝑉

𝑡
∙ 𝑃

• Output of Attention: 𝐵 ∙
S

𝑐
∙
𝐻

𝑡
∙ 𝑃

• MLP Block Activations

• Input to LayerNorm (before MLP): 𝐵 ∙
𝑆

𝑐∙𝑡
∙ 𝐻 ∙ 𝑃

• Input to MLP Linear Layers (Up/Gate Projections): 𝐵 ∙
S

𝑐
∙
𝐻

𝑡
∙ 𝑃

• Input to Down Projection: 𝐵 ∙
S

𝑐
∙
2𝐻𝑖𝑛𝑡𝑒𝑟

𝑡
∙ 𝑃

• Total Memory per Layer:
1

𝑐∙𝑡
∙ 𝐵 ∙ 𝑆 ∙ 4𝐻 + 2𝐻𝐾𝑉 + 2𝐻𝑖𝑛𝑡𝑒𝑟 ∙ 𝑃
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𝐵: batch size

𝑆: Sequence Length

𝐻: Hidden Size

𝐻𝐾𝑉: GQA hidden size for KV

𝐻𝑖𝑛𝑡𝑒𝑟: MLP Intermediate Size

𝑡: TP / SP world size

𝑐: CP world size

𝑃: Precision (2 for bf16)
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03
Activation Checkpoint



Recap: GPU memory hierarchy
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block 0

thread 0 thread 1 thread 8

…
…

Global memory

Shared memory 

Registers Registers

block 3 Shared memory: 64 KB per core

GPU memory(Global memory):

RTX3080   10GB
RTX3090   24GB
A100         40/80 GB



Sources of memory consumption

A simplified view of a typical computational graph for training, weights are omitted

and implied in the grad steps.

33

input linear relu linear loss

linear-grad relu-grad linear-grad loss-grad label

Sources of memory consumption

• Model weights

• Optimizer states

• Intermediate activation values

Optimizer states

𝑤1 𝑤2 𝑢2𝑢1



Activation Memory Cost for Training

34

input linear relu linear loss

linear-grad relu-grad linear-grad loss-grad label

Because the need to keep intermediate value around (checkpoint) for the gradient steps.

Training a 𝑁-layer neural network would require 𝑂(𝑁) memory.

We will use the following simplified view to combine gradient and forward computation



Checkpointing Techniques in AD

35

Step 0:

Step 1:

Step 2:

• Only checkpoint colored nodes (step 0)

• Recompute the missing intermediate nodes in small segments (step 1, 2)



Sublinear Memory Cost

36

Forward computation

Gradient per segment
with re-computation

For a 𝑁 layer neural network,
if we checkpoint every𝐾 layers

𝑀𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑠𝑡 = 𝑂
𝑁

𝐾
+ 𝑂 𝐾 Pick 𝐾 = 𝑁

Checkpoint cost Re-computation cost
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