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LLMs are Slow and Expensive to Serve
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Global memory

Shared memory 

Registers Registers

• At least ten H100-80GB GPUs to serve 671B Deepseek v3

• Generating tokens at ~20 tokens per seconds

• Cannot process many requests in parallel



Recall: Incremental Decoding
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Main issues: 

• Limited degree of parallelism → underutilized GPU resources

• Need all parameters to decode a token → bottlenecked by GPU memory access 



Recall: Prefill and Decode
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To be , or not to be , that is a question .

Prefill Phase Decode Phase

Time To First Token (TTFT) Time Per Output Token (TPOT)
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Continuous Batching

AF Disaggregation

PD Disaggregation

Prefix Cache
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Continuous Batching



Batching Requests to Improve GPU Performance
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Batching Requests to Improve GPU Performance

8

T1 T8T2 T3 T4 T5 T6 T7

END

END

END

T1 T8T2 T3 T4 T5 T6 T7

END

S1 S1 S1 S1

S2 S2 S2

S3 S3 S3 S3

S4 S4 S4 S4 S4

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2

S3 S3 S3 S3

S4 S4 S4 S4 S4 S4

S2

Issues with static batching: 

• Requests may complete at different iterations

• Idle GPU cycles

• New requests cannot start immediately 



Continuous Batching
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END

END

END

T1 T8T2 T3 T4 T5 T6 T7

END

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S5 S5 S5

S6S6

S4 S4 S4 S4 S4 S4

S2

Benefits:  

• Higher GPU utilization

• New requests can start immediately 

S7
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Continuous Batching Step-by-Step
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• Receives two new requests R1 and R2 

R1: optimizing ML 
systems 

R2: LLM serving is 

Maximum serving batch_size = 3 

Request Pool 
(CPU) 

Execution Engine
(GPU) 



Continuous Batching Step-by-Step
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• Iteration 1: decode R1 and R2

R1: optimizing ML 
systems 

R2: LLM serving is 

Maximum serving batch_size = 3 

Request Pool 
(CPU) 

Execution Engine
(GPU) 



Continuous Batching Step-by-Step
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• Receive a new request R3; finish decoding R1 and R2

R1: optimizing ML 
systems requires

R2: LLM serving is critical.

Maximum serving batch_size = 3 

Request Pool 
(CPU) 

Execution Engine
(GPU) 

R3: A man



Continuous Batching Step-by-Step
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• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

R1: optimizing ML 
systems requires ML

R2: LLM serving is critical. 
<EOS>

Maximum serving batch_size = 3 

Request Pool 
(CPU) 

Execution Engine
(GPU) 

R3: A man isR4: A dog is

R5: How are



Continuous Batching Step-by-Step
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• Iteration 3: decode R1, R3, R4

R1: optimizing ML 
systems requires

R4: A dog is

Maximum serving batch_size = 3 

Request Pool 
(CPU) 

Execution Engine
(GPU) 

R3: A man isR5: How are



Continuous Batching
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• Handle early-finished and late-arrived requests more efficiently

• Higher GPU utilization
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PD Disaggregation



Continuous Batching Hurt both TTFT and TPOT

17

R1

R2

R3

R4

time



Continuous Batching Hurt both TTFT and TPOT
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R1

R2

R3

R4

time

Extra decoding time



Continuous Batching Hurt both TTFT and TPOT
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R1

R2

R3

R4

time

Extra decoding time

Extra prefillig time



Different Computation Paradigm
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To be , or not to be , that is a question .

Prefill Phase Decode Phase

Prefill phase: compute-bound Decoding phase: memory-bound



Resource and Parallelism Coupling
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Coupling leads to overprovision resources to meet the more demanding SLO



Opportunity: Disaggregating Prefill and Decoding
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Controller

Prefill Instance

LLM Model

GPU GPU

Parallel Runtime

Decode Instance

LLM Model

GPU GPU

Parallel Runtime

GPU GPU

Request

KV Cache Transfer



Opportunity: Disaggregating Prefill and Decoding
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• Prefill-Decoding interference is immediately eliminated

• Naturally divide the SLO satisfaction problem into two optimizations:

• Prefill instance optimizes for TTFT.

• Decoding instance optimizes for TPOT.

• Choose the most suitable parallelism and resource allocation for each phase.



PD Disaggregation Config for DeepSeek V3 
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• H800 cluster interconnected using NVLink, fully interconnected via IB

• Prefill – 32 H800 GPU

• Attention:

• TP 4 with SP

• DP 8

• MoE

• EP 32

• Decode – 320 H800 GPU

• Attention:

• TP 4 with SP

• DP 80

• MoE

• EP 320

Why do we need larger scale for decode stage?



Background: Roofline Model
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𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐹𝐿𝑂𝑃𝑠

𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠



Roofline Model for MoE Layer
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𝑅𝑎𝑡𝑖𝑜 =
2 ∙ 𝑀 ∙ 𝑁 ∙ 𝐾

𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 + 𝑀 ∙ 𝑁

For example: Gemm

For  MoE Gemm

𝑀: Tokens to this expert
𝑁 = 7168: hidden size 
𝐾 = 2048: intermediate size



Roofline Model for MoE Layer
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For example: Gemm

For  MoE Gemm

𝑀: Tokens to this expert
𝑁 = 7168: hidden size 
𝐾 = 2048: intermediate size

H100 / H800 hardware roof @fp8

𝑅𝑎𝑡𝑖𝑜 =
1979 𝑇𝐹𝑙𝑜𝑝𝑠/𝑠

3.35𝑇𝐵/𝑠
= 591 𝐹𝐿𝑂𝑃𝑠/𝐵𝑦𝑡𝑒

𝑅𝑎𝑡𝑖𝑜 =
2 ∙ 𝑀 ∙ 𝑁 ∙ 𝐾

𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 + 𝑀 ∙ 𝑁

𝑀 ≥ 295 ≈ 300, 𝐵𝑔𝑙𝑜𝑏𝑎𝑙 ≥ 300 × 32 = 9600, 𝐵𝑙𝑜𝑐𝑎𝑙 ≤ 30, ∴ 𝑆𝐸𝑃 ≥ 320



Roofline Model for MoE Layer
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For example: Gemm

For  MoE Gemm

𝑀: Tokens to this expert
𝑁 = 7168: hidden size 
𝐾 = 2048: intermediate size

H20 hardware roof @fp8

𝑅𝑎𝑡𝑖𝑜 =
296 𝑇𝐹𝑙𝑜𝑝𝑠/𝑠

4 𝑇𝐵/𝑠
= 74 𝐹𝐿𝑂𝑃𝑠/𝐵𝑦𝑡𝑒

𝑅𝑎𝑡𝑖𝑜 =
2 ∙ 𝑀 ∙ 𝑁 ∙ 𝐾

𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 + 𝑀 ∙ 𝑁

𝑀 ≥ 37 ≈ 40, 𝐵𝑔𝑙𝑜𝑏𝑎𝑙 ≥ 40 × 32 = 1280, 𝐵𝑙𝑜𝑐𝑎𝑙 ≤ 30, ∴ 𝑆𝐸𝑃 ≥ 42
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03
AF Disaggregation



Recap: Different Computation Paradigm
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To be , or not to be , that is a question .

Prefill Phase Decode Phase

Prefill phase: compute-bound Decoding phase: memory-bound



Different Computation Paradigm
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To be , or not to be , that is a question .

Attention Layer MoE Layer

Attention Layer: compute-bound MoE Layer: memory-bound



Disaggregating Attention and MoE Layer
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Attention Instance

Attention Params
& KV Cache

Parallel Runtime

MoE Layer

Expert i's Params

GPU GPU

Parallel Runtime

GPU GPU

M2N

GPU GPU

GPU GPU

Replicate (M) Expert Parallel (N)

Low-Latency Comm

Decode Instance

NVIDIA H100 GPUs NVIDIA H20 GPUs



Pipeline Parallelism in AF-Disaggregation
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Expert-as-a-Service
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Expert Server Design
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Comparison between PDD and AFD

PD-Disaggregating

• Transfer once for single request

• Require high throughput

• Utilize GPU computation

• For better SLO

36

AF-Disaggregating

• Transfer multi times for single token

• Require low latency

• Utilize GPU computation

• For fault tolerance
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04
Prefix Cache



Same Prompt Prefix
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Random an integer 
number between 1 and 6

Request 1:

Random an integer 
number between 1 and 6

Request 2:

Random an integer 
number between 1 and 6

Request 3:

LLM

1

4

2



Recap: Paged Attention
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between 1 and 6

Random an integer number

Physical KV blocks
Prompt: “Random an integer number between 1 and 6”

Random an integer number

between 1 and 6

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Request 1

Random an integer number

between 1 and 6

Logical KV blocks

Request 2



Recap: Paged Attention
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between 1 and 6

1

4

Random an integer number

Physical KV blocks
Prompt: “Random an integer number between 1 and 6”

Random an integer number

between 1 and 6

1

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Request 1

Random an integer number

between 1 and 6

4

Logical KV blocks

Request 2



Paged Attention Natively Support Prefix Cache

However:

• The paged attention prefix cache can be only reused in an instance

• The GPU memory is limited, and can not store history prefix cache

• Real world contains many requests with the same prefix cache

41



MoonCake: Distributed KVCache Pool

42
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System for Artificial Intelligence

Thanks
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