
Machine Learning Systems

LLMs Serving Techniques I

Siyuan Feng

Shanghai Innovation Institute

LLMs are Slow and Expensive to Serve

2

Global memory

Shared memory

Registers Registers

• At least ten H100-80GB GPUs to serve 671B Deepseek v3

• Generating tokens at ~20 tokens per seconds

• Cannot process many requests in parallel

Recall: Incremental Decoding

3

Main issues:

• Limited degree of parallelism → underutilized GPU resources

• Need all parameters to decode a token → bottlenecked by GPU memory access

Recall: Prefill and Decode

4

To be , or not to be , that is a question .

Prefill Phase Decode Phase

Time To First Token (TTFT) Time Per Output Token (TPOT)

OUTLINE

01 02

03 04

5

Continuous Batching

AF Disaggregation

PD Disaggregation

Prefix Cache

6

01
Continuous Batching

Batching Requests to Improve GPU Performance

7

END

G
en

e
ra

ti
o

n
 It

e
ra

ti
o

n

T1 T8T2 T3 T4 T5 T6 T7

Batching Requests to Improve GPU Performance

8

T1 T8T2 T3 T4 T5 T6 T7

END

END

END

T1 T8T2 T3 T4 T5 T6 T7

END

S1 S1 S1 S1

S2 S2 S2

S3 S3 S3 S3

S4 S4 S4 S4 S4

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2

S3 S3 S3 S3

S4 S4 S4 S4 S4 S4

S2

Issues with static batching:

• Requests may complete at different iterations

• Idle GPU cycles

• New requests cannot start immediately

Continuous Batching

9

END

END

END

T1 T8T2 T3 T4 T5 T6 T7

END

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S5 S5 S5

S6S6

S4 S4 S4 S4 S4 S4

S2

Benefits:

• Higher GPU utilization

• New requests can start immediately

S7

T1 T8T2 T3 T4 T5 T6 T7

S1 S1 S1 S1

S2 S2 S2

S3 S3 S3 S3

S4 S4 S4 S4 S4

Continuous Batching Step-by-Step

10

• Receives two new requests R1 and R2

R1: optimizing ML
systems

R2: LLM serving is

Maximum serving batch_size = 3

Request Pool
(CPU)

Execution Engine
(GPU)

Continuous Batching Step-by-Step

11

• Iteration 1: decode R1 and R2

R1: optimizing ML
systems

R2: LLM serving is

Maximum serving batch_size = 3

Request Pool
(CPU)

Execution Engine
(GPU)

Continuous Batching Step-by-Step

12

• Receive a new request R3; finish decoding R1 and R2

R1: optimizing ML
systems requires

R2: LLM serving is critical.

Maximum serving batch_size = 3

Request Pool
(CPU)

Execution Engine
(GPU)

R3: A man

Continuous Batching Step-by-Step

13

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

R1: optimizing ML
systems requires ML

R2: LLM serving is critical.
<EOS>

Maximum serving batch_size = 3

Request Pool
(CPU)

Execution Engine
(GPU)

R3: A man isR4: A dog is

R5: How are

Continuous Batching Step-by-Step

14

• Iteration 3: decode R1, R3, R4

R1: optimizing ML
systems requires

R4: A dog is

Maximum serving batch_size = 3

Request Pool
(CPU)

Execution Engine
(GPU)

R3: A man isR5: How are

Continuous Batching

15

• Handle early-finished and late-arrived requests more efficiently

• Higher GPU utilization

16

02
PD Disaggregation

Continuous Batching Hurt both TTFT and TPOT

17

R1

R2

R3

R4

time

Continuous Batching Hurt both TTFT and TPOT

18

R1

R2

R3

R4

time

Extra decoding time

Continuous Batching Hurt both TTFT and TPOT

19

R1

R2

R3

R4

time

Extra decoding time

Extra prefillig time

Different Computation Paradigm

20

To be , or not to be , that is a question .

Prefill Phase Decode Phase

Prefill phase: compute-bound Decoding phase: memory-bound

Resource and Parallelism Coupling

21

Coupling leads to overprovision resources to meet the more demanding SLO

Opportunity: Disaggregating Prefill and Decoding

22

Controller

Prefill Instance

LLM Model

GPU GPU

Parallel Runtime

Decode Instance

LLM Model

GPU GPU

Parallel Runtime

GPU GPU

Request

KV Cache Transfer

Opportunity: Disaggregating Prefill and Decoding

23

• Prefill-Decoding interference is immediately eliminated

• Naturally divide the SLO satisfaction problem into two optimizations:

• Prefill instance optimizes for TTFT.

• Decoding instance optimizes for TPOT.

• Choose the most suitable parallelism and resource allocation for each phase.

PD Disaggregation Config for DeepSeek V3

24

• H800 cluster interconnected using NVLink, fully interconnected via IB

• Prefill – 32 H800 GPU

• Attention:

• TP 4 with SP

• DP 8

• MoE

• EP 32

• Decode – 320 H800 GPU

• Attention:

• TP 4 with SP

• DP 80

• MoE

• EP 320

Why do we need larger scale for decode stage?

Background: Roofline Model

25

𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐹𝐿𝑂𝑃𝑠

𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠

Roofline Model for MoE Layer

26

𝑅𝑎𝑡𝑖𝑜 =
2 ∙ 𝑀 ∙ 𝑁 ∙ 𝐾

𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 + 𝑀 ∙ 𝑁

For example: Gemm

For MoE Gemm

𝑀: Tokens to this expert
𝑁 = 7168: hidden size
𝐾 = 2048: intermediate size

Roofline Model for MoE Layer

27

For example: Gemm

For MoE Gemm

𝑀: Tokens to this expert
𝑁 = 7168: hidden size
𝐾 = 2048: intermediate size

H100 / H800 hardware roof @fp8

𝑅𝑎𝑡𝑖𝑜 =
1979 𝑇𝐹𝑙𝑜𝑝𝑠/𝑠

3.35𝑇𝐵/𝑠
= 591 𝐹𝐿𝑂𝑃𝑠/𝐵𝑦𝑡𝑒

𝑅𝑎𝑡𝑖𝑜 =
2 ∙ 𝑀 ∙ 𝑁 ∙ 𝐾

𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 + 𝑀 ∙ 𝑁

𝑀 ≥ 295 ≈ 300, 𝐵𝑔𝑙𝑜𝑏𝑎𝑙 ≥ 300 × 32 = 9600, 𝐵𝑙𝑜𝑐𝑎𝑙 ≤ 30, ∴ 𝑆𝐸𝑃 ≥ 320

Roofline Model for MoE Layer

28

For example: Gemm

For MoE Gemm

𝑀: Tokens to this expert
𝑁 = 7168: hidden size
𝐾 = 2048: intermediate size

H20 hardware roof @fp8

𝑅𝑎𝑡𝑖𝑜 =
296 𝑇𝐹𝑙𝑜𝑝𝑠/𝑠

4 𝑇𝐵/𝑠
= 74 𝐹𝐿𝑂𝑃𝑠/𝐵𝑦𝑡𝑒

𝑅𝑎𝑡𝑖𝑜 =
2 ∙ 𝑀 ∙ 𝑁 ∙ 𝐾

𝑀 ∙ 𝐾 + 𝑁 ∙ 𝐾 + 𝑀 ∙ 𝑁

𝑀 ≥ 37 ≈ 40, 𝐵𝑔𝑙𝑜𝑏𝑎𝑙 ≥ 40 × 32 = 1280, 𝐵𝑙𝑜𝑐𝑎𝑙 ≤ 30, ∴ 𝑆𝐸𝑃 ≥ 42

29

03
AF Disaggregation

Recap: Different Computation Paradigm

30

To be , or not to be , that is a question .

Prefill Phase Decode Phase

Prefill phase: compute-bound Decoding phase: memory-bound

Different Computation Paradigm

31

To be , or not to be , that is a question .

Attention Layer MoE Layer

Attention Layer: compute-bound MoE Layer: memory-bound

Disaggregating Attention and MoE Layer

32

Attention Instance

Attention Params
& KV Cache

Parallel Runtime

MoE Layer

Expert i's Params

GPU GPU

Parallel Runtime

GPU GPU

M2N

GPU GPU

GPU GPU

Replicate (M) Expert Parallel (N)

Low-Latency Comm

Decode Instance

NVIDIA H100 GPUs NVIDIA H20 GPUs

Pipeline Parallelism in AF-Disaggregation

33

Expert-as-a-Service

34

Expert Server Design

35

Comparison between PDD and AFD

PD-Disaggregating

• Transfer once for single request

• Require high throughput

• Utilize GPU computation

• For better SLO

36

AF-Disaggregating

• Transfer multi times for single token

• Require low latency

• Utilize GPU computation

• For fault tolerance

37

04
Prefix Cache

Same Prompt Prefix

38

Random an integer
number between 1 and 6

Request 1:

Random an integer
number between 1 and 6

Request 2:

Random an integer
number between 1 and 6

Request 3:

LLM

1

4

2

Recap: Paged Attention

39

between 1 and 6

Random an integer number

Physical KV blocks
Prompt: “Random an integer number between 1 and 6”

Random an integer number

between 1 and 6

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Request 1

Random an integer number

between 1 and 6

Logical KV blocks

Request 2

Recap: Paged Attention

40

between 1 and 6

1

4

Random an integer number

Physical KV blocks
Prompt: “Random an integer number between 1 and 6”

Random an integer number

between 1 and 6

1

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Request 1

Random an integer number

between 1 and 6

4

Logical KV blocks

Request 2

Paged Attention Natively Support Prefix Cache

However:

• The paged attention prefix cache can be only reused in an instance

• The GPU memory is limited, and can not store history prefix cache

• Real world contains many requests with the same prefix cache

41

MoonCake: Distributed KVCache Pool

42

Acknowledgement

The development of this course, including its structure, content, and accompanying presentation

slides, has been significantly influenced and inspired by the excellent work of instructors and
institutions who have shared their materials openly. We wish to extend our sincere

acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.

- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all

content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely
our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

43

System for Artificial Intelligence

Thanks

Siyuan Feng

Shanghai Innovation Institute

	Slide 1: LLMs Serving Techniques I
	Slide 2: LLMs are Slow and Expensive to Serve
	Slide 3: Recall: Incremental Decoding
	Slide 4: Recall: Prefill and Decode
	Slide 5
	Slide 6
	Slide 7: Batching Requests to Improve GPU Performance
	Slide 8: Batching Requests to Improve GPU Performance
	Slide 9: Continuous Batching
	Slide 10: Continuous Batching Step-by-Step
	Slide 11: Continuous Batching Step-by-Step
	Slide 12: Continuous Batching Step-by-Step
	Slide 13: Continuous Batching Step-by-Step
	Slide 14: Continuous Batching Step-by-Step
	Slide 15: Continuous Batching
	Slide 16
	Slide 17: Continuous Batching Hurt both TTFT and TPOT
	Slide 18: Continuous Batching Hurt both TTFT and TPOT
	Slide 19: Continuous Batching Hurt both TTFT and TPOT
	Slide 20: Different Computation Paradigm
	Slide 21: Resource and Parallelism Coupling
	Slide 22: Opportunity: Disaggregating Prefill and Decoding
	Slide 23: Opportunity: Disaggregating Prefill and Decoding
	Slide 24: PD Disaggregation Config for DeepSeek V3
	Slide 25: Background: Roofline Model
	Slide 26: Roofline Model for MoE Layer
	Slide 27: Roofline Model for MoE Layer
	Slide 28: Roofline Model for MoE Layer
	Slide 29
	Slide 30: Recap: Different Computation Paradigm
	Slide 31: Different Computation Paradigm
	Slide 32: Disaggregating Attention and MoE Layer
	Slide 33: Pipeline Parallelism in AF-Disaggregation
	Slide 34: Expert-as-a-Service
	Slide 35: Expert Server Design
	Slide 36: Comparison between PDD and AFD
	Slide 37
	Slide 38: Same Prompt Prefix
	Slide 39: Recap: Paged Attention
	Slide 40: Recap: Paged Attention
	Slide 41: Paged Attention Natively Support Prefix Cache
	Slide 42: MoonCake: Distributed KVCache Pool
	Slide 43: Acknowledgement
	Slide 44: Thanks

