Machine Learning Systems

LLMs Serving Techniques |

Siyuan Feng
Shanghai Innovation Institute




! c LB 8 Y F Kk

LLMs are Slow and Expensive to Serve el R
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* At least ten H100-80GB GPUs to serve 671B Deepseek v3

* Generating tokens at ~20 tokens per seconds

e Cannot process many requests in parallel




Recall: Incremental Decoding
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Main issues:

* Limited degree of parallelism - underutilized GPU resources
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* Need all parameters to decode a token - bottlenecked by GPU memory access
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' Recall: Prefill and Decode L ig e 8 F kK
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Prefill Phase Decode Phase

Time To First Token (TTFT) Time Per Output Token (TPOT)
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@ »  Continuous Batching @ »  PD Disaggregation

@ » Prefix Cache

@ » AF Disaggregation
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' Batching Requests to Improve GPU Performance *Li3el 8 F R
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Generation lteration




' Batching Requests to Improve GPU Performance Lo E R

Shanghai Innovation Institute

Issues with static batching:
* Requests may complete at different iterations

* |dle GPU cycles

* New requests cannot start immediately
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Benefits:
* Higher GPU utilization

* New requests can start immediately
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* Receives two new requests R1 and R2

Maximum serving batch_size = 3

R1: optimizing ML

systems

R2: LLM serving is

Request Pool Execution Engine

(CPU) (GPU) .



' Continuous Batching Step-by-Step £ B 8l 8 F [k

Shanghai Innovation Institute

 |[teration 1: decode R1 and R2

Maximum serving batch_size = 3

R1: optimizing ML

systems

R2: LLM serving is

Request Pool Execution Engine

(CPU) (GPU) .
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* Receive a new request R3; finish decoding R1 and R2

Maximum serving batch_size = 3

systems requires
R2: LLM serving is critical.

Request Pool Execution Engine

(CPU) (GPU) .
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* Ilteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch_size = 3

R1: optimizing ML
systems requires ML

R5: How are

R2: LLM serving is critical.
<EOS>

Request Pool Execution Engine

(CPU) (GPU) .
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* |teration 3: decode R1, R3, R4

Maximum serving batch_size = 3

R1: optimizing ML
systems requires

R4: A dog is

Request Pool Execution Engine

(CPU) (GPU) .
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* Handle early-finished and late-arrived requests more efficiently

* Higher GPU utilization
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PD Disaggregation
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' Continuous Batching Hurt both TTFT and TPOT ’J: B el 8 bk
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Extra decoding time

A A A
[ \ [ \
>

time

AN

R2




' Continuous Batching Hurt both TTFT and TPOT ’ L 8ol 8 ZF R

Shanghai Innovation Institute

Extra decoding time
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' Different Computation Paradigm £ B 8l 8§ 7
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Prefill Phase Decode Phase

Decoding phase: memory-bound
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' Resource and Parallelism Coupling L5 6l 8 F &
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Coupling leads to overprovision resources to meet the more demanding SLO

TTFT TTFT
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' Opportunity: Disaggregating Prefill and Decoding v Lig el 8 F B
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Controller
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Prefill Instance Decode Instance
LLM Model KV Cache Transfer LLM Model
' GPU GPU
GPU GPU
GPU GPU
Parallel Runtime in Parallel Runtime in
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Opportunity: Disaggregating Prefill and Decoding £ B o8 Z
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* Prefill-Decoding interference is immediately eliminated

* Naturally divide the SLO satisfaction problem into two optimizations:
 Prefill instance optimizes for TTFT.
* Decoding instance optimizes for TPOT.

* Choose the most suitable parallelism and resource allocation for each phase.

Request
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PD Disaggregation Config for DeepSeek V3 g L 388 F kR
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* H800 cluster interconnected using NVLink, fully interconnected via IB

* Prefill—32 H800 GPU * Decode — 320 H800 GPU
* Attention: * Attention:
* TP 4 with SP * TP 4 with SP
* DP8 * DP &0
* MoE * MoE
* EP32 * EP 320

Why do we need larger scale for decode stage?
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Actual Bandwidth roof

Computation roof
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Actual Bandwidth roof
For example: Gemm

Computation roof
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Roofline Model for MoE Layer

For example: Gemm

2-M-N-K
M-K+N-K+M-N

Ratio =

For MoE Gemm

M Tokens to this expert
N = 7168: hidden size
K = 2048: intermediate size

H100 / H800 hardware roof @fp8

1979 TFlops/s

3.35TB/s
= 591 FLOPs/Byte

Ratio =

M > 295 = 300, Byjopq; = 300 X 32 = 9600, Byycq; < 30, Sgp = 320

are Performance

AT TR EL:
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Actual Bandwidth roof

/ Computation roof

Computation Bounded Design

Memory Bounded Design c\ Bad Design

Computation to Communication Ratio

’



Roofline Model for MoE Layer

For example: Gemm

2-M-N-K

Ratio =
A0 = KIN-K+M-N

For MoE Gemm

M Tokens to this expert
N = 7168: hidden size
K = 2048: intermediate size

H20 hardware roof @fp8

296 TFlops/s

4TB/s
= 74 FLOPs/Byte

Ratio =

e Performance
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Actual Bandwidth roof

/ Computation roof

\ Computation Bounded Design

Memory Bounded Design c\ Bad Design

Computation to Communication Ratio

M > 37 =~ 40, Byjopa; = 40 X 32 = 1280, Bjyeq; < 30, Sgp = 42 N ‘
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' Recap: Different Computation Paradigm £ el 8%k
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Prefill Phase Decode Phase

Decoding phase: memory-bound
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Prefill phase: compute-bound |
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Attention Layer MoE Layer

Attention Layer: compute-bound MoE Layer: memory-bound




! Disaggregating Attention and MoE Layer *LBEE F R

Decode Instance

Replicate (M) Expert Parallel (N)

Attention Instance MoE Layer
Attention Params Expert i's Params
& KV Cache M2N P

GPU GPU ' ' GPU GPU

Low-Latency Comm
GPU GPU GPU
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Parallel Runtime — Parallel Runtime ||

NVIDIA H20 GPUs

NVIDIA H100 GPUs
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Pipeline Parallelism in AF-Disaggregation ’ e
i, | micro-batch i at layer k — dependency across layers
m #micro-batches =4 L #layers =2

max{T,, T }x(mL — 1)

Attention| 1, [ 2, [ 3, | 4,1 1,4 2,1 3, 4,

A2E T, |14] [24] [34] |41 112][[2:](]3,] |4,
Expert T 1, | 2,/ 3,/| 4/| 1,/]] 2, | 3, | 4, |Lc
E2A T,

max{T,, T ,}Jxmx(L—1) T,

Time
Figure 4 Illustration of ping-pong pipeline parallelism.
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Expert-as-a-serVice ’ SJ?EE\ng;?;i I?rtjov;%)n ﬁ-stitltxjjtle:
Shared Comm. Group Scalable MoE Servers

Attention Clients

Attention Router
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Expert Server Design LBl E R R
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Comparison between PDD and AFD " e
PD-Disaggregating AF-Disaggregating

* Transfer once for single request e Transfer multi times for single token

* Require high throughput * Require low latency

e Utilize GPU computation e Utilize GPU computation

 For better SLO * For fault tolerance
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Prefix Cache
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Same Prompt Prefix

Random an integer

Request 1: [ number between 1 and 6

Random an integer

R t 2:
eques [ number between 1 and 6

LLM

Random an integer

Request 3: [ number between 1 and 6

EiE o E %
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Recap: Paged Attention g LBEEZIR
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Prompt: “Random an integer number between 1 and 6”

Physical KV blocks

Request 1
: block O
Logical KV blocks
Random an integer number between 1 and 6 block 1
between 1 and 6 block 2
block 3
Request 2 block 4
Logical KV blocks block 5
Random an integer number
block 6
between 1 and 6
Random an integer number blOCk 7
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Recap: Paged Attention g LBEEZIR
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Prompt: “Random an integer number between 1 and 6”

Physical KV blocks

Request 1
: block O
Logical KV blocks
Random an integer number between 1 and 6 block 1
between 1 and 6 1 block 2
! block 3
Request 2 4 block 4
Logical KV blocks block 5
Random an integer number
block 6
between 1 and 6
Random an integer number blOCk 7
4
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Paged Attention Natively Support Prefix Cache * LB e8Ik

However:

* The paged attention prefix cache can be only reused in an instance
* The GPU memory is limited, and can not store history prefix cache

* Real world contains many requests with the same prefix cache
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Figure 2: MOONCAKE Architecture.
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