Machine Learning Systems

LLMs Serving Techniques |

Siyuan Feng
Shanghai Innovation Institute

! c LB 8 Y F Kk

LLMs are Slow and Expensive to Serve el R
\ J
Y

* At least ten H100-80GB GPUs to serve 671B Deepseek v3

* Generating tokens at ~20 tokens per seconds

e Cannot process many requests in parallel

Recall: Incremental Decoding

[Accelerating LLM requires machine] ;> learning > systems :»>optimizations
e B e T T
lterations: ' 01 : g0 : 21 : 3 1

| : 1 | - 1 1 : 1 1
v’ : Mo’ i Vo : M\

:Transformer Layer 1
LLM
?I'ransformér Layer 96
N—— —
Vol DN N
Outputs: learning -# systems - optlmlzatlons [EOS]

Main issues:

* Limited degree of parallelism - underutilized GPU resources

’Q‘

B el & F Mk

Shanghai Innovation Institute

* Need all parameters to decode a token - bottlenecked by GPU memory access

y 4

N

' Recall: Prefill and Decode L ig e 8 F kK

Shanghai Innovation Institute

Prefill Phase Decode Phase

Time To First Token (TTFT) Time Per Output Token (TPOT)

oo e o oo R O

P

@ » Continuous Batching @ » PD Disaggregation

@ » Prefix Cache

@ » AF Disaggregation

¢
Continuous Batching

y N <,

' Batching Requests to Improve GPU Performance *Li3el 8 F R

Shanghai Innovation Institute

Generation lteration

' Batching Requests to Improve GPU Performance Lo E R

Shanghai Innovation Institute

Issues with static batching:
* Requests may complete at different iterations

* |dle GPU cycles

* New requests cannot start immediately

' Continuous Batching £ B 8l 8§ 7

Shanghai Innovation Institute

Benefits:
* Higher GPU utilization

* New requests can start immediately

' Continuous Batching Step-by-Step £ B 8l 8 F [k

Shanghai Innovation Institute

* Receives two new requests R1 and R2

Maximum serving batch_size = 3

R1: optimizing ML

systems

R2: LLM serving is

Request Pool Execution Engine

(CPU) (GPU) .

' Continuous Batching Step-by-Step £ B 8l 8 F [k

Shanghai Innovation Institute

 |[teration 1: decode R1 and R2

Maximum serving batch_size = 3

R1: optimizing ML

systems

R2: LLM serving is

Request Pool Execution Engine

(CPU) (GPU) .

' Continuous Batching Step-by-Step £ B 8l 8§ 7

Shanghai Innovation Institute

* Receive a new request R3; finish decoding R1 and R2

Maximum serving batch_size = 3

systems requires
R2: LLM serving is critical.

Request Pool Execution Engine

(CPU) (GPU) .

' Continuous Batching Step-by-Step £ B 8l 8 F [k

Shanghai Innovation Institute

* Ilteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch_size = 3

R1: optimizing ML
systems requires ML

R5: How are

R2: LLM serving is critical.
<EOS>

Request Pool Execution Engine

(CPU) (GPU) .

' Continuous Batching Step-by-Step £ B 8l 8 F [k

Shanghai Innovation Institute

* |teration 3: decode R1, R3, R4

Maximum serving batch_size = 3

R1: optimizing ML
systems requires

R4: A dog is

Request Pool Execution Engine

(CPU) (GPU) .

Continuous Batching " L i el 8] %k

Shanghai Innovation Institute

* Handle early-finished and late-arrived requests more efficiently

* Higher GPU utilization

¢

02

PD Disaggregation

y N <,

' Continuous Batching Hurt both TTFT and TPOT ’J: B el 8 bk

Shanghai Innovation Institute

time

P

R2

' Continuous Batching Hurt both TTFT and TPOT LiE 68 R

Shanghai Innovation Institute

Extra decoding time

A A A
[\ [\
>

time

AN

R2

' Continuous Batching Hurt both TTFT and TPOT ’ L 8ol 8 ZF R

Shanghai Innovation Institute

Extra decoding time

A A — A
| | | |
m /3 nane
V/ >

time

Extra prefillig time .
19

R2

R3

' Different Computation Paradigm £ B 8l 8§ 7

Shanghai Innovation Institute

Prefill Phase Decode Phase

Decoding phase: memory-bound

I
|
|
I
|
Prefill phase: compute-bound |
I
I

' Resource and Parallelism Coupling L5 6l 8 F &

Shanghai Innovation Institute

Coupling leads to overprovision resources to meet the more demanding SLO

TTFT TTFT
A A T
o iR e el A | Alm B .
! ! ! i o |12
Ky I I (A
soms | MU WREENE LT S -
TPVOT TPVOT Both time get shorter due to
speedup with more GPU

add more GPU

X1l ——) 0 x4 A

' Opportunity: Disaggregating Prefill and Decoding v Lig el 8 F B

Shanghai Innovation Institute

Controller
I
I —— I
I — I
Prefill Instance Decode Instance
LLM Model KV Cache Transfer LLM Model
' GPU GPU
GPU GPU
GPU GPU
Parallel Runtime in Parallel Runtime in

v 4 ”

Opportunity: Disaggregating Prefill and Decoding £ B o8 Z

Shanghai Innovation Institute

* Prefill-Decoding interference is immediately eliminated

* Naturally divide the SLO satisfaction problem into two optimizations:
 Prefill instance optimizes for TTFT.
* Decoding instance optimizes for TPOT.

* Choose the most suitable parallelism and resource allocation for each phase.

Request

Controller

| — [
[— [
Prefill Instance Prefill Instance
LLM Model KV Cache Transfer LLM Model
' GPU GPU
GPU GPU
GPU GPU
Parallel Runtime Im Parallel Runtime im

N »

PD Disaggregation Config for DeepSeek V3 g L 388 F kR

Shanghai Innovation Institute

* H800 cluster interconnected using NVLink, fully interconnected via IB

* Prefill—32 H800 GPU * Decode — 320 H800 GPU
* Attention: * Attention:
* TP 4 with SP * TP 4 with SP
* DP8 * DP &0
* MoE * MoE
* EP32 * EP 320

Why do we need larger scale for decode stage?

' Background: Roofline Model LB 88 2R

Shanghai Innovation Institute

Actual Bandwidth roof

Computation roof

@ / ‘\
O .
= s/ Computation Bounded Design
© <y
, Compute FLOPs S é.“'-’-' /
Ratio = o ~ 7/
Memory Access ‘T S,
) o
o & !
&) Q /
5| 5,
= = / \
© & ff Memory Bounded Design Bad Design
o ()
oy
L ;F 7

Computation to Communication Ratio .
25

! c LB 8 Y F Kk

ROOfIine MOdEI for IVIOE Layer Shanghai Innovation Institute

Actual Bandwidth roof
For example: Gemm

Computation roof

2-M-N-K L

Ratio =

M-K+N-K+M-N o “ / \
= § If Computation Bounded Design
For MoE Gemm g _%’QI"
: = s,
M: Tokens to this expert o g
N = 7168: hidden size ® Qg !
K = 2048: intermediate size g h&" f C\
© § :f Memory Bounded Design Bad Design
<
o 4
L N ;

Computation to Communication Ratio

N

Roofline Model for MoE Layer

For example: Gemm

2-M-N-K
M-K+N-K+M-N

Ratio =

For MoE Gemm

M Tokens to this expert
N = 7168: hidden size
K = 2048: intermediate size

H100 / H800 hardware roof @fp8

1979 TFlops/s

3.35TB/s
= 591 FLOPs/Byte

Ratio =

M > 295 = 300, Byjopq; = 300 X 32 = 9600, Byycq; < 30, Sgp = 320

are Performance

AT TR EL:
S LEmeEs

Shanghai Innovation Institute

Actual Bandwidth roof

/ Computation roof

Computation Bounded Design

Memory Bounded Design c\ Bad Design

Computation to Communication Ratio

’

Roofline Model for MoE Layer

For example: Gemm

2-M-N-K

Ratio =
A0 = KIN-K+M-N

For MoE Gemm

M Tokens to this expert
N = 7168: hidden size
K = 2048: intermediate size

H20 hardware roof @fp8

296 TFlops/s

4TB/s
= 74 FLOPs/Byte

Ratio =

e Performance

AT TR EL:
S LEmeEs

Shanghai Innovation Institute

Actual Bandwidth roof

/ Computation roof

\ Computation Bounded Design

Memory Bounded Design c\ Bad Design

Computation to Communication Ratio

M > 37 =~ 40, Byjopa; = 40 X 32 = 1280, Bjyeq; < 30, Sgp = 42 N ‘

¢
AF Disaggregation

y N <,

' Recap: Different Computation Paradigm £ el 8%k

Shanghai Innovation Institute

Prefill Phase Decode Phase

Decoding phase: memory-bound

I
|
|
I
|
Prefill phase: compute-bound |
I
I

' Different Computation Paradigm £ B 8l 8§ 7

Shanghai Innovation Institute

Attention Layer MoE Layer

Attention Layer: compute-bound MoE Layer: memory-bound

! Disaggregating Attention and MoE Layer *LBEE F R

Decode Instance

Replicate (M) Expert Parallel (N)

Attention Instance MoE Layer
Attention Params Expert i's Params
& KV Cache M2N P

GPU GPU ' ' GPU GPU

Low-Latency Comm
GPU GPU GPU

GPU

Parallel Runtime — Parallel Runtime ||

NVIDIA H20 GPUs

NVIDIA H100 GPUs

" 4

Pipeline Parallelism in AF-Disaggregation ’ e
i, | micro-batch i at layer k — dependency across layers
m #micro-batches =4 L #layers =2

max{T,, T }x(mL — 1)

Attention| 1, [2, [3, | 4,1 1,4 2,1 3, 4,

A2E T, |14] [24] [34] |41 112][[2:](]3,] |4,
Expert T 1, | 2,/ 3,/| 4/| 1,/]] 2, | 3, | 4, |Lc
E2A T,

max{T,, T ,}Jxmx(L—1) T,

Time
Figure 4 Illustration of ping-pong pipeline parallelism.

33

" 4 o

Expert-as-a-serVice ’ SJ?EE\ng;?;i I?rtjov;%)n ﬁ-stitltxjjtle:
Shared Comm. Group Scalable MoE Servers

Attention Clients

Attention Router

Attention Router ™ E
Attention Router =™ E
All Al

A T A
Attention Router |=» m

-F Attention Router E

(a) Standard Expert Parallelism (b) Decoupled Esa8 Expert Service

Attention Router

) (A

Attention Router

=

Attention Router

BITOIE

Async P2P i BELE.l pgunc P2p

4 \

4

Expert Server Design LBl E R R

Shanghai Innovation Institute

atate Header Buffer Grouped GEMM He_:-.'t Ctate
Client Q Data Size Artivation
= |1 Layar I3 Expart 10 / Token 7
Houper Scare
Client 1 > —
Q I 1
Client
2 | <‘ 0
Clignt :
1] | 7]
Weighted
N | o [s]

. Token Local Experts
> Client Write E=EE: Client Read E===p: Client Polling

; Empty 1: Client Write Done 2 Server Computation Done 3 Offline

v

Comparison between PDD and AFD " e
PD-Disaggregating AF-Disaggregating

* Transfer once for single request e Transfer multi times for single token

* Require high throughput * Require low latency

e Utilize GPU computation e Utilize GPU computation

 For better SLO * For fault tolerance

¢

04

Prefix Cache

y N <,

Same Prompt Prefix

Random an integer

Request 1: [number between 1 and 6

Random an integer

R t 2:
eques [number between 1 and 6

LLM

Random an integer

Request 3: [number between 1 and 6

EiE o E %

Shanghai Innovation Institute

" 4 o

Recap: Paged Attention g LBEEZIR

Shanghai Innovation Institute

Prompt: “Random an integer number between 1 and 6”

Physical KV blocks

Request 1
: block O
Logical KV blocks
Random an integer number between 1 and 6 block 1
between 1 and 6 block 2
block 3
Request 2 block 4
Logical KV blocks block 5
Random an integer number
block 6
between 1 and 6
Random an integer number blOCk 7

y \

" 4 o

Recap: Paged Attention g LBEEZIR

Shanghai Innovation Institute

Prompt: “Random an integer number between 1 and 6”

Physical KV blocks

Request 1
: block O
Logical KV blocks
Random an integer number between 1 and 6 block 1
between 1 and 6 1 block 2
! block 3
Request 2 4 block 4
Logical KV blocks block 5
Random an integer number
block 6
between 1 and 6
Random an integer number blOCk 7
4

py \

P y

Paged Attention Natively Support Prefix Cache * LB e8Ik

However:

* The paged attention prefix cache can be only reused in an instance
* The GPU memory is limited, and can not store history prefix cache

* Real world contains many requests with the same prefix cache

41

MoonCake: Distributed KVCache Pool ’l Ltigel g F Ik

Shanghai Innovation Institute

!
f s 1
KVCache- | - \ W)
centric } |/Preﬁll Instance) /Preﬁll Instance) I
Conductor _ 1|[cPuvRAM GPU/NRAM | Prefill Stage
- PP/SP : Optimization Goal
- o I Local Local I
Cache-aware . E ||| Chunked |msp| Chunked || :
S ifedﬁ"l £ Prefin T 7 1 Prefill T 0 [' | max Cache Reuse
cheduier '{|| Scheduler [Paged KVCache J Scheduler [Paged KVCache J ' s.t.
Y ﬁ _____________________ — E _____ v TTFT SLO,
((orommimss — || |[crupmaimss — || | MFULower Boung
; : KVCache < DRAM
g . Distributed KVCache Pool N - Distributed KVCache Pool I
= 2 -
KVCache ‘z - %"’ @? :
Balance 5! KVCache Transfer Engi .
o - gine
Scheduler € | A |
c ! Y %%, > D -
g N
i CPU/DRAM/SSD CPU/DRAM/SSD :
. Distributed KVCache Pool Distributed KVCache Pool|| |, | D©¢0ding Stage
........... o] } s it == Opt|m|zat|onGoa|
fimi=oo o s B b [l i oSl
< 1|| GPUNVRAM v GPU/VRAM !
LOSS;?)ZI;ZCE & | [Paged KVCache] [Paged KVCache] i L max Throughput
Scheduler g . g l I s.t.
g ! X TBT SLO
8 Local Local U | ’
o
8 ! || scheduter|™ Scheduler|™” : KVCache < VRAM
I -
|\Decoding Instance J KDecoding Instance J '

Figure 2: MOONCAKE Architecture.

y

Acknowledgement g LEaE SR
The development of this course, including its structure, content, and accompanying presentation
slides, has been significantly influenced and inspired by the excellent work of instructors and
institutions who have shared their materials openly. We wish to extend our sincere
acknowledgement and gratitude to the following courses, which served as invaluable references
and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by Tianqi Chen and Zhihao Jia at CMU.
- Advanced Topics in Machine Learning (Systems)[CS6216], by Yao Lu at NUS

While these materials provided a foundational blueprint and a wealth of insightful examples, all
content herein has been adapted, modified, and curated to meet the specific learning objectives of
our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely
our own responsibility. We are profoundly grateful for the contributions of the educators listed
above, whose dedication to teaching and knowledge-sharing has made the creation of this course
possible.

43

System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute

	Slide 1: LLMs Serving Techniques I
	Slide 2: LLMs are Slow and Expensive to Serve
	Slide 3: Recall: Incremental Decoding
	Slide 4: Recall: Prefill and Decode
	Slide 5
	Slide 6
	Slide 7: Batching Requests to Improve GPU Performance
	Slide 8: Batching Requests to Improve GPU Performance
	Slide 9: Continuous Batching
	Slide 10: Continuous Batching Step-by-Step
	Slide 11: Continuous Batching Step-by-Step
	Slide 12: Continuous Batching Step-by-Step
	Slide 13: Continuous Batching Step-by-Step
	Slide 14: Continuous Batching Step-by-Step
	Slide 15: Continuous Batching
	Slide 16
	Slide 17: Continuous Batching Hurt both TTFT and TPOT
	Slide 18: Continuous Batching Hurt both TTFT and TPOT
	Slide 19: Continuous Batching Hurt both TTFT and TPOT
	Slide 20: Different Computation Paradigm
	Slide 21: Resource and Parallelism Coupling
	Slide 22: Opportunity: Disaggregating Prefill and Decoding
	Slide 23: Opportunity: Disaggregating Prefill and Decoding
	Slide 24: PD Disaggregation Config for DeepSeek V3
	Slide 25: Background: Roofline Model
	Slide 26: Roofline Model for MoE Layer
	Slide 27: Roofline Model for MoE Layer
	Slide 28: Roofline Model for MoE Layer
	Slide 29
	Slide 30: Recap: Different Computation Paradigm
	Slide 31: Different Computation Paradigm
	Slide 32: Disaggregating Attention and MoE Layer
	Slide 33: Pipeline Parallelism in AF-Disaggregation
	Slide 34: Expert-as-a-Service
	Slide 35: Expert Server Design
	Slide 36: Comparison between PDD and AFD
	Slide 37
	Slide 38: Same Prompt Prefix
	Slide 39: Recap: Paged Attention
	Slide 40: Recap: Paged Attention
	Slide 41: Paged Attention Natively Support Prefix Cache
	Slide 42: MoonCake: Distributed KVCache Pool
	Slide 43: Acknowledgement
	Slide 44: Thanks

