
Machine Learning Systems

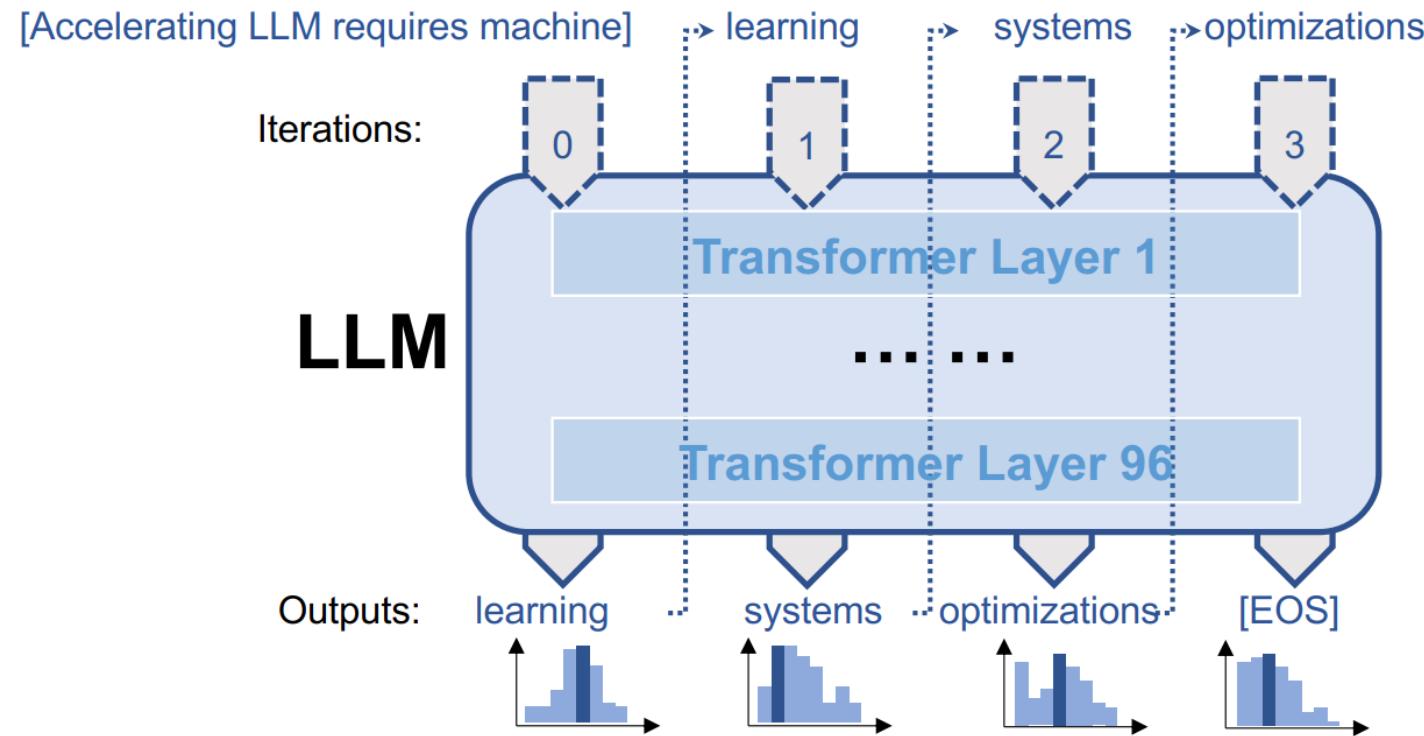
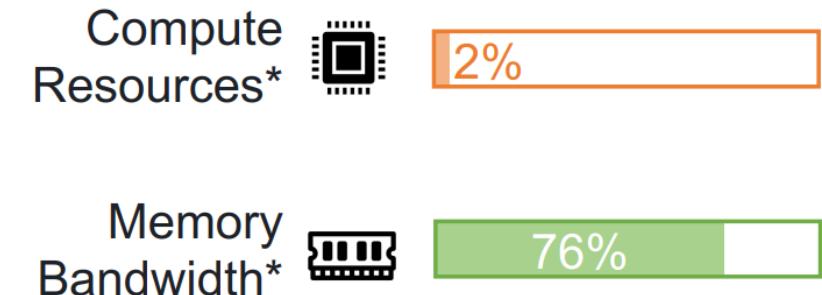
LLMs Serving Techniques II

Siyuan Feng
Shanghai Innovation Institute

01

Speculative Decoding

Recall: Incremental Decoding Issues



- Limited degree of parallelism → underutilized GPU resources
- Need all parameters to decode a token → bottlenecked by GPU memory access

Tradeoffs between Different Language Models

# Parameters	175B	13B	2.7B	760M	125M
TriviaQA	71.2	57.5	42.3	26.5	6.96
PIQA	82.3	79.9	75.4	72.0	64.3
SQuAD	64.9	62.6	50.0	39.2	27.5
latency	20 s	7.6s	2.7s	1.1s	0.3s
# A100s	10	1	1	1	1

Comparing multiple GPT-3 models*

Large models

👍 Pro: better generative performance

👎 Con: slow and expensive to serve

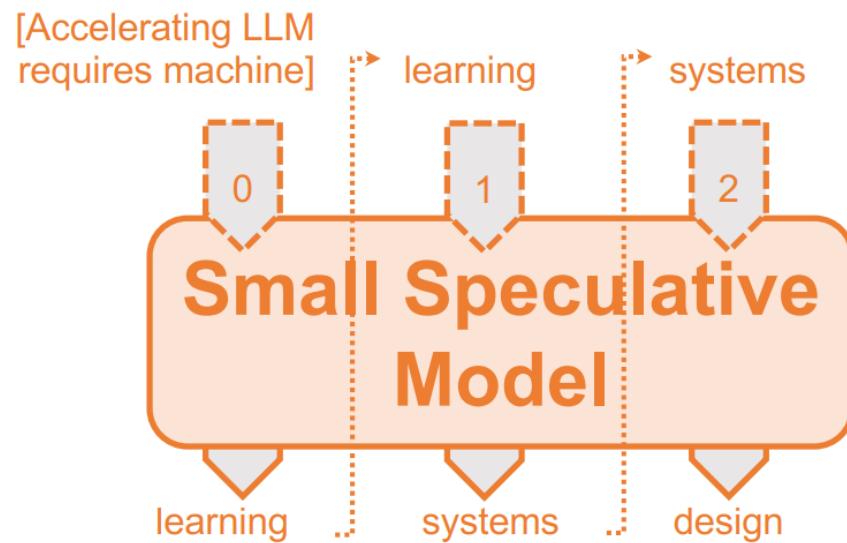
Small models

👍 Pro: cheap and fast

👎 Con: less accurate

Speculative Decoding

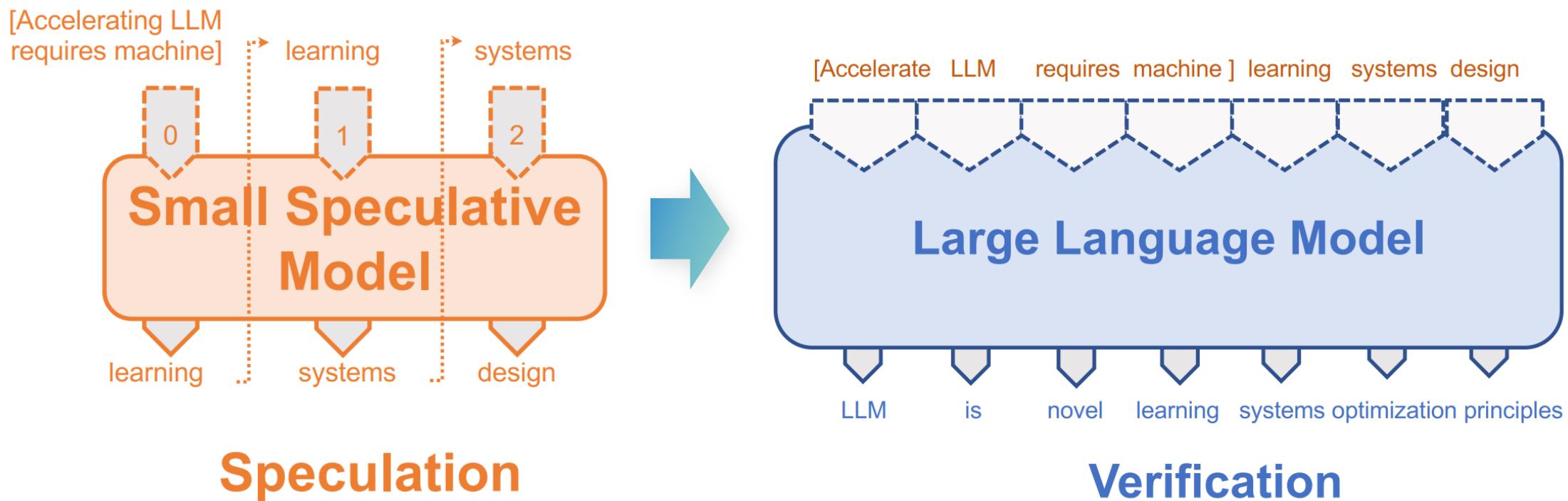
1. Use a small speculative model (SSM) to predict the LLM's output
 - SSM runs much faster than LLM



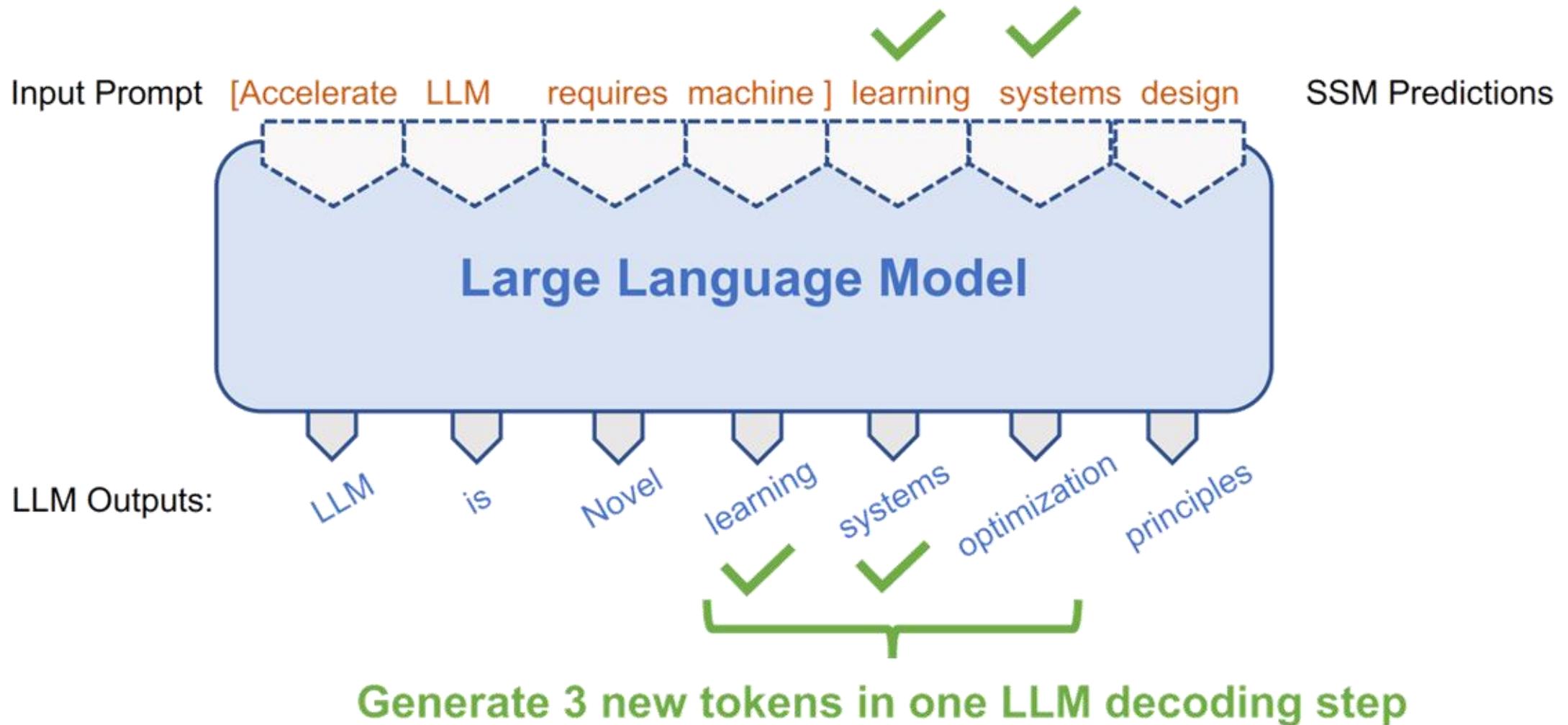
Speculation

Speculative Decoding

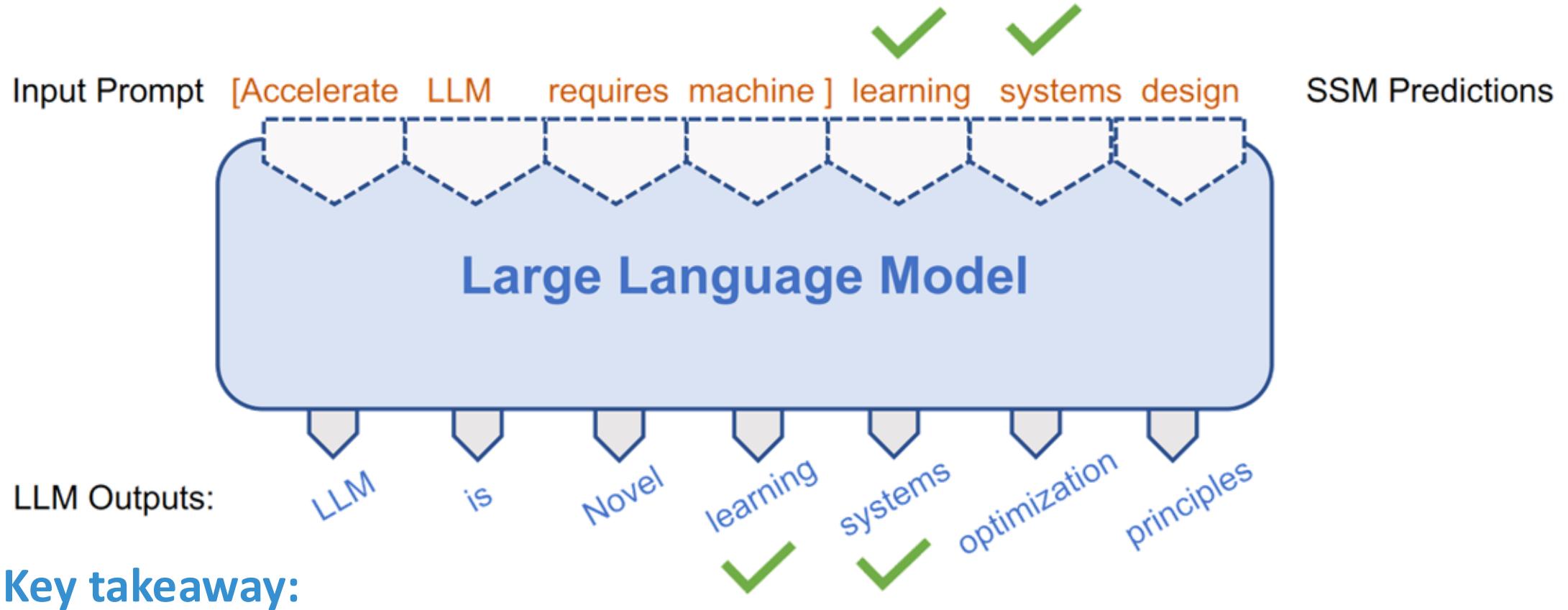
1. Use a small speculative model (SSM) to predict the LLM's output
 - SSM runs much faster than LLM
2. Use the LLM to verify the SSM's prediction



Verifying Speculative Decoding Results



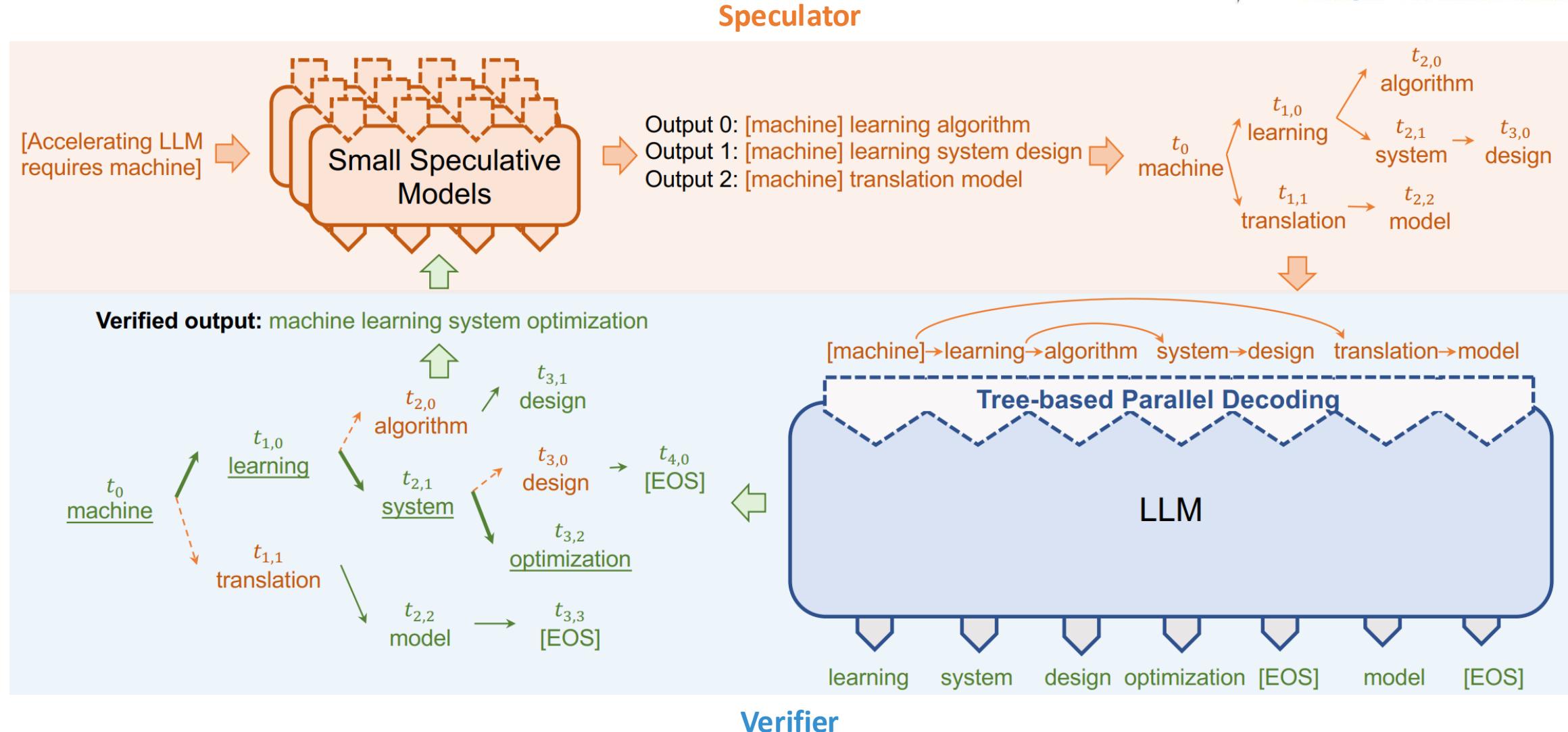
Verifying Speculative Decoding Results



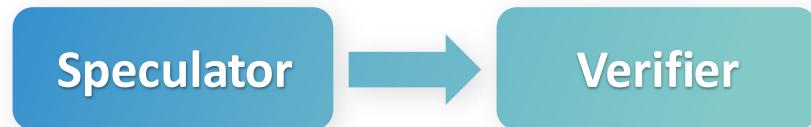
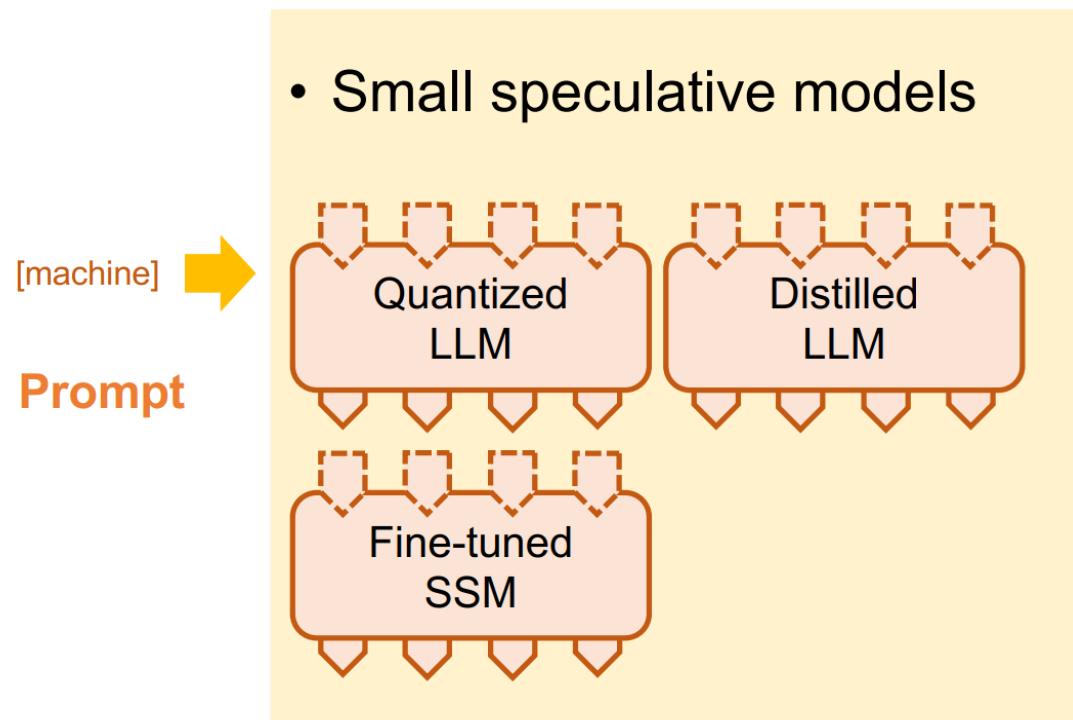
- LLM inference is bottlenecked by accessing model weights
- using LLM to decode multiple tokens to improve GPU utilization

- **Key idea:** not use LLMs as incremental decoder, use them as **parallel token tree verifier**
- **Better performance:** outperform existing LLM systems by **1.3-2.4x**
- **Higher efficiency:** reduce GPU memory access by **2.5-4.4x**
- **Correctness:** verification guarantees end-to-end equivalence

SpecInfer Workflow



Learning-based Speculator



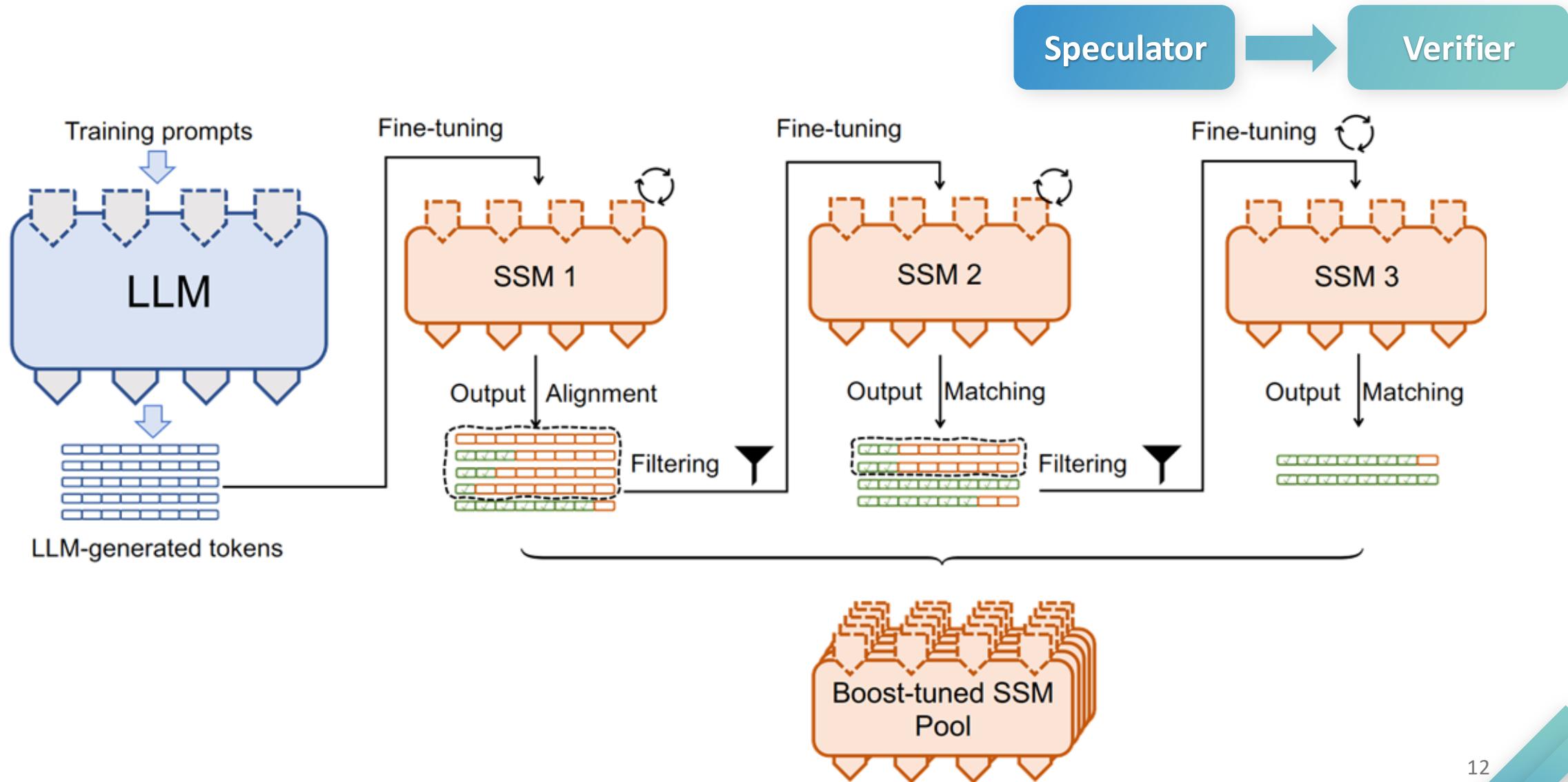
SSM 0: [machine] → intelligence

SSM 1: [machine] → translation → model

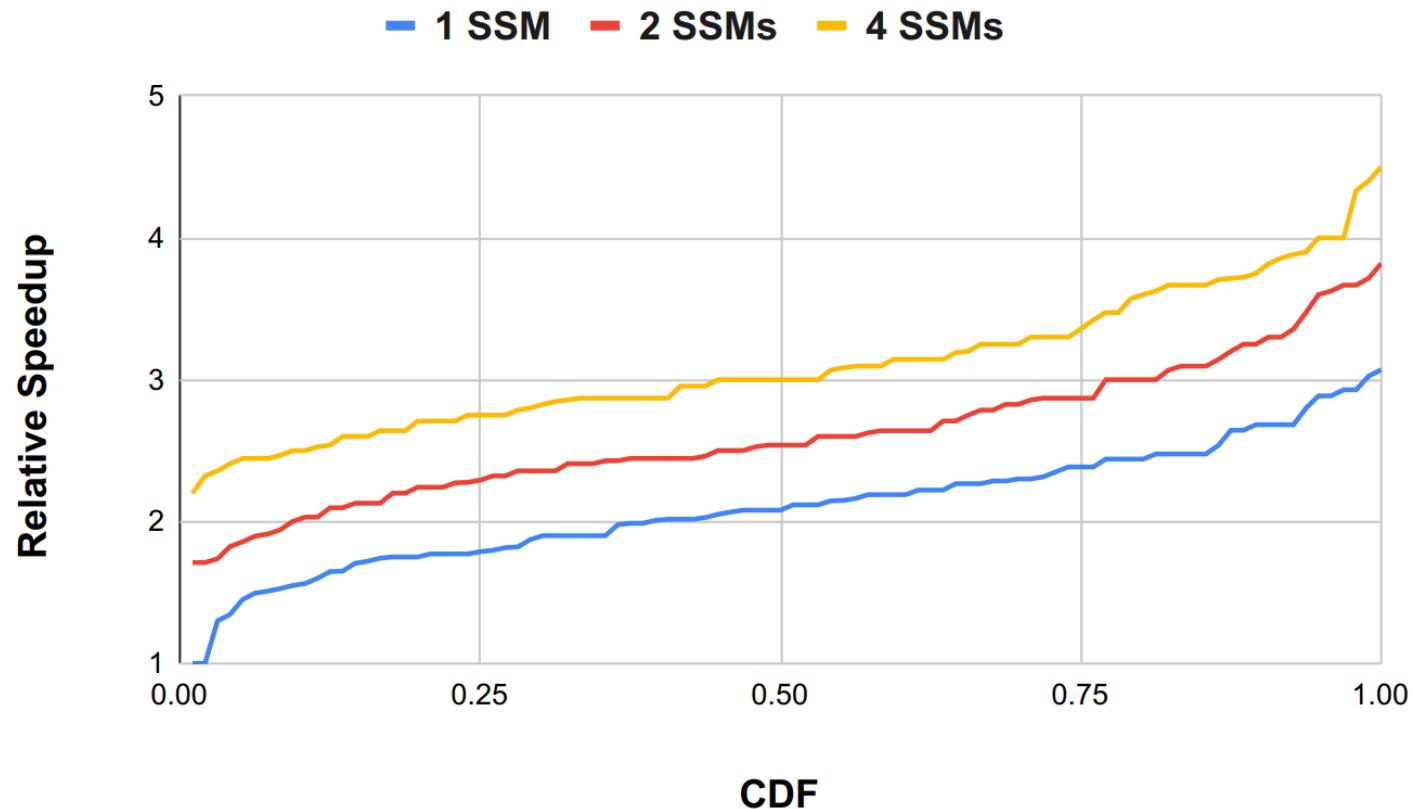
SSM 2: [machine] → learning
algorithm
system → design

Speculated Tokens

Collective Boost-Tuning



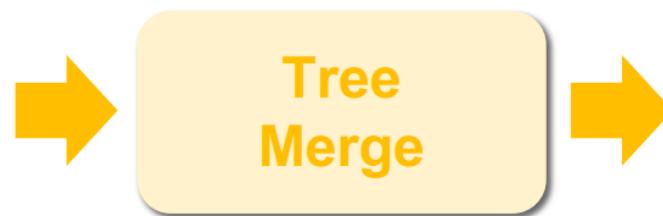
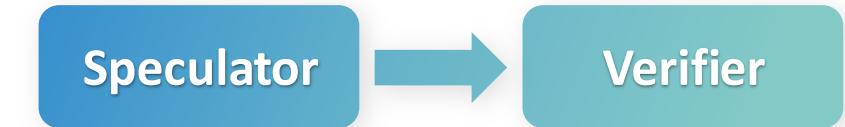
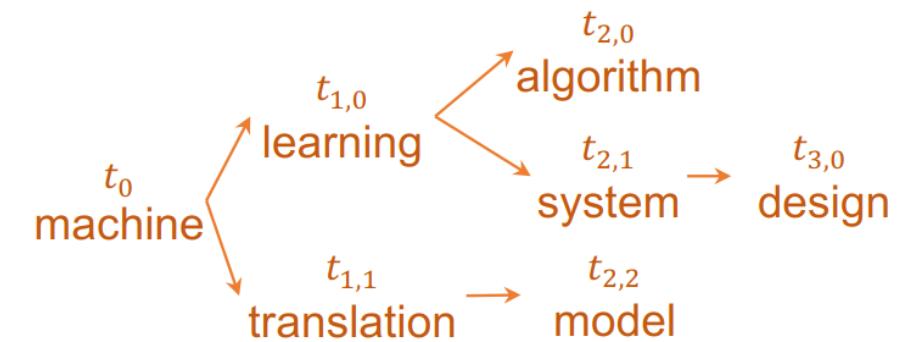
Collective Boost-Tuning Consistently Improves Performance



Token Tree Merge

- A compact way to represent speculated tokens

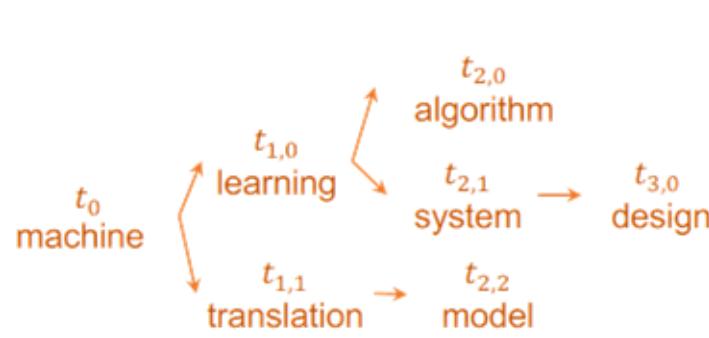
SSM 0: [machine] learning algorithm
SSM 1: [machine] learning system design
SSM 2: [machine] translation model



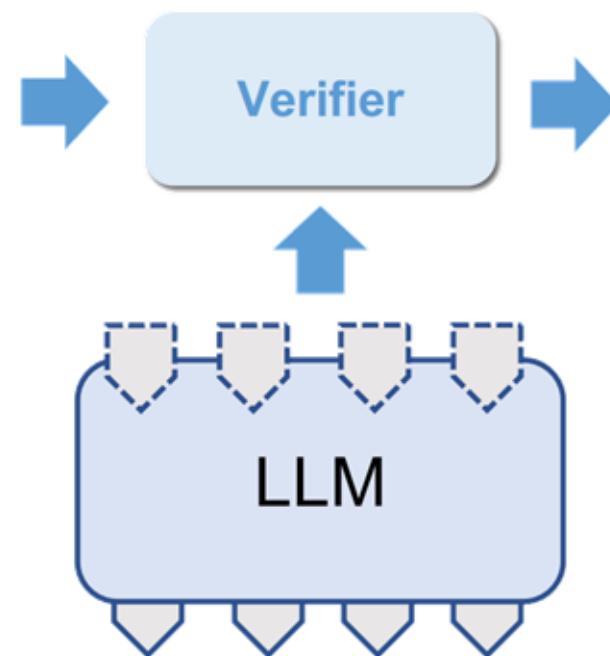
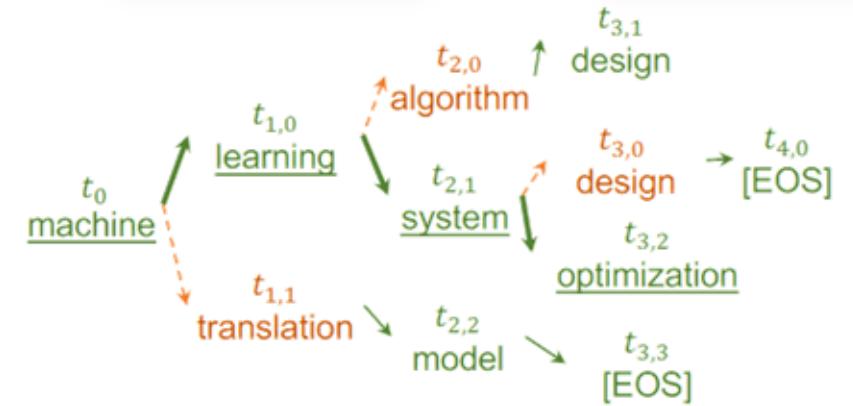
Token Sequences

Token Tree

Token Tree Verifier

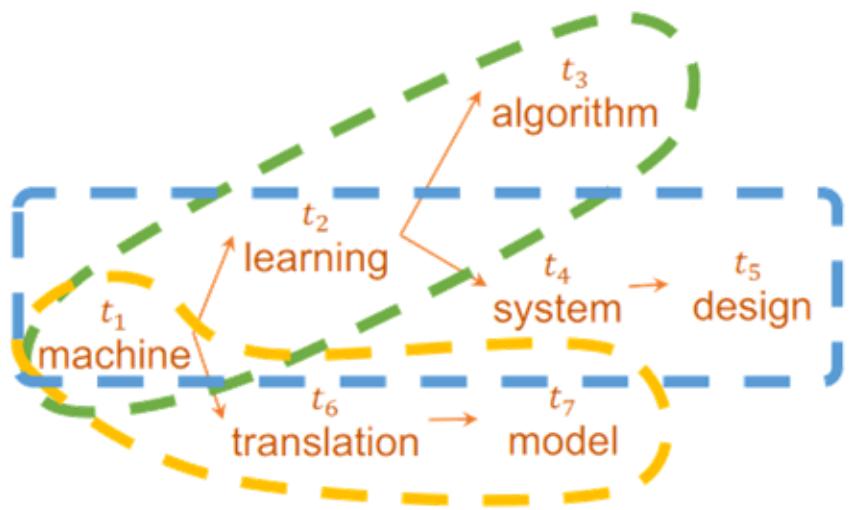
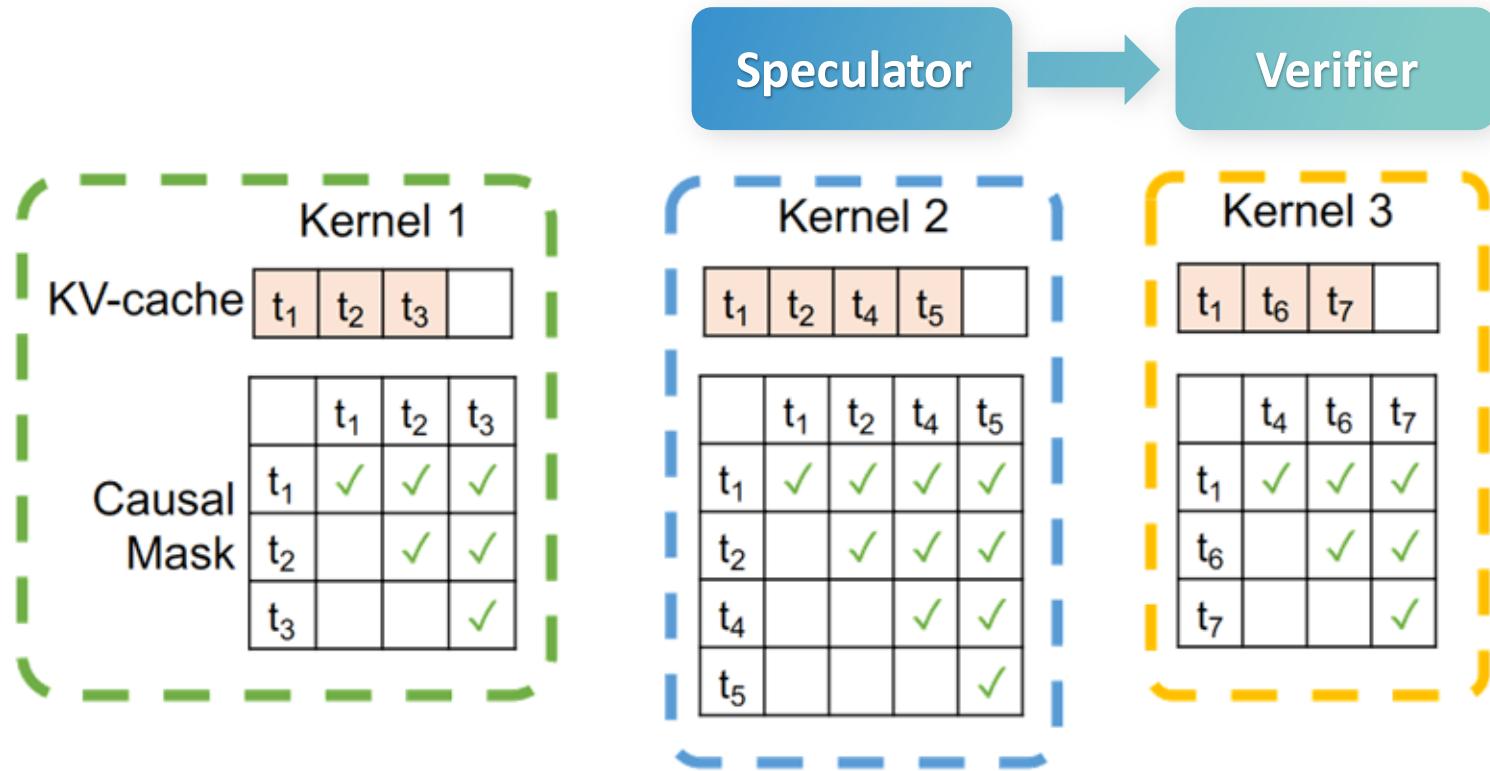


Speculated token tree



Verified token tree

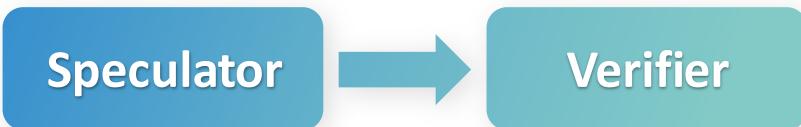
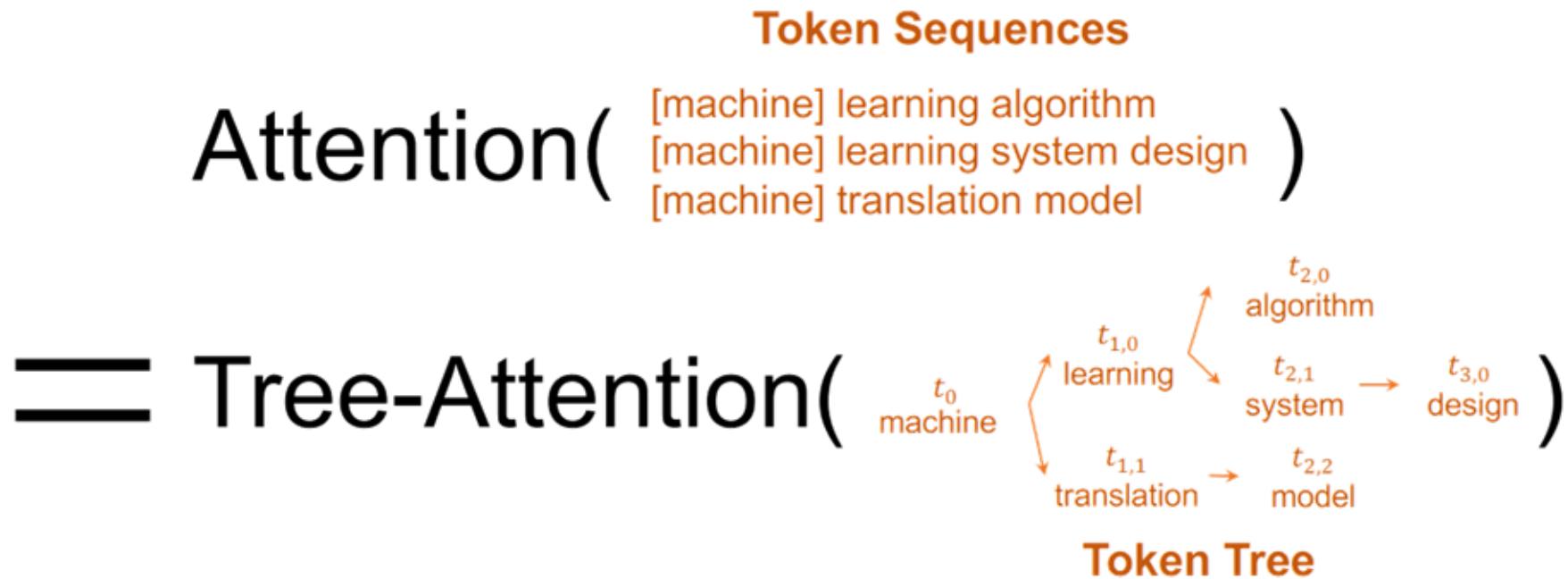
Sequence-based Decoding



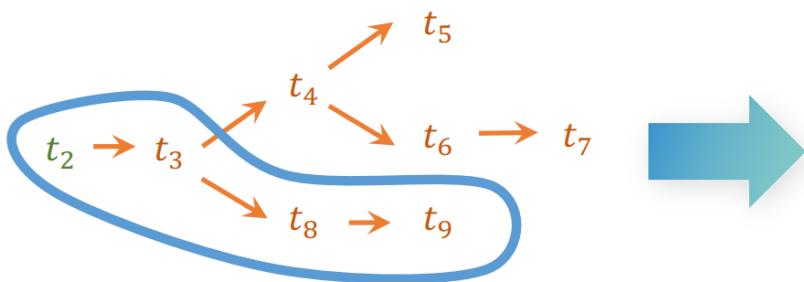
Issues:

- Redundant decoding computation
- More requests \rightarrow more GPU memory for key/value cache

- same output as sequence attention for each token; no redundancy

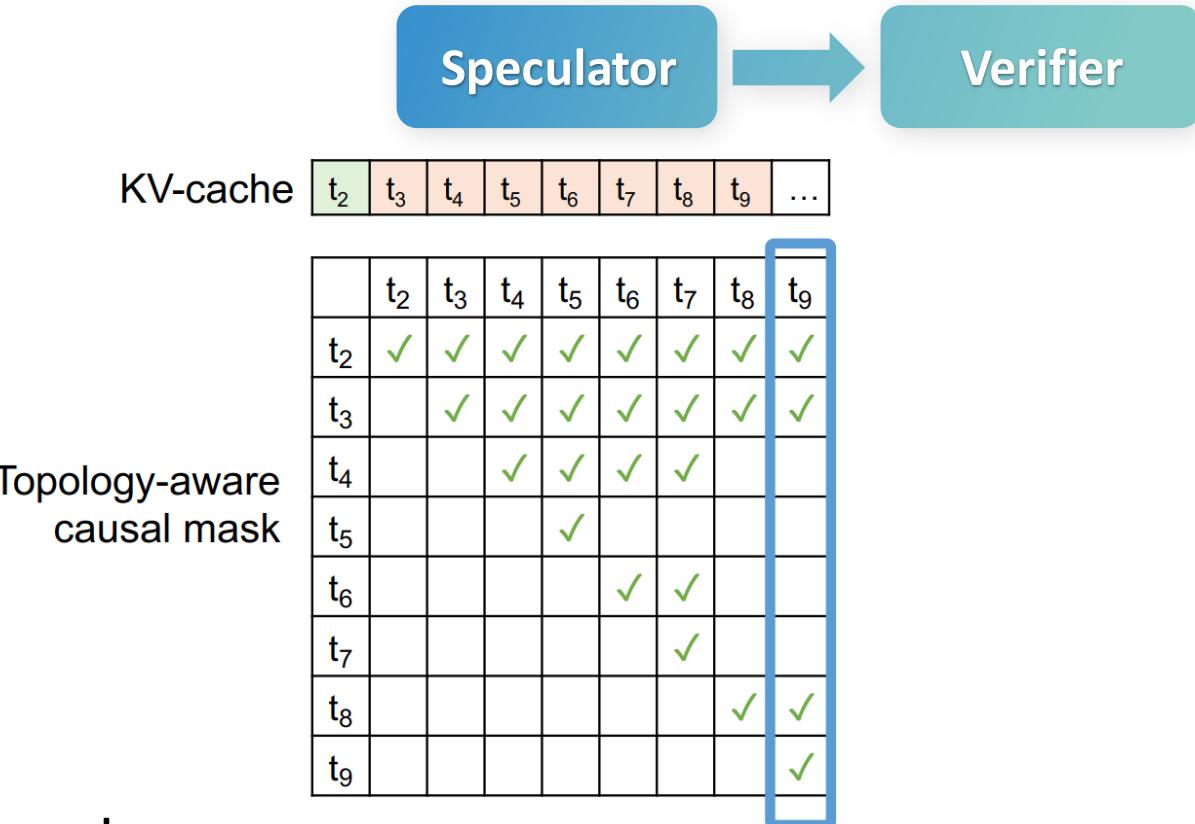


Tree-based Parallel Decoding

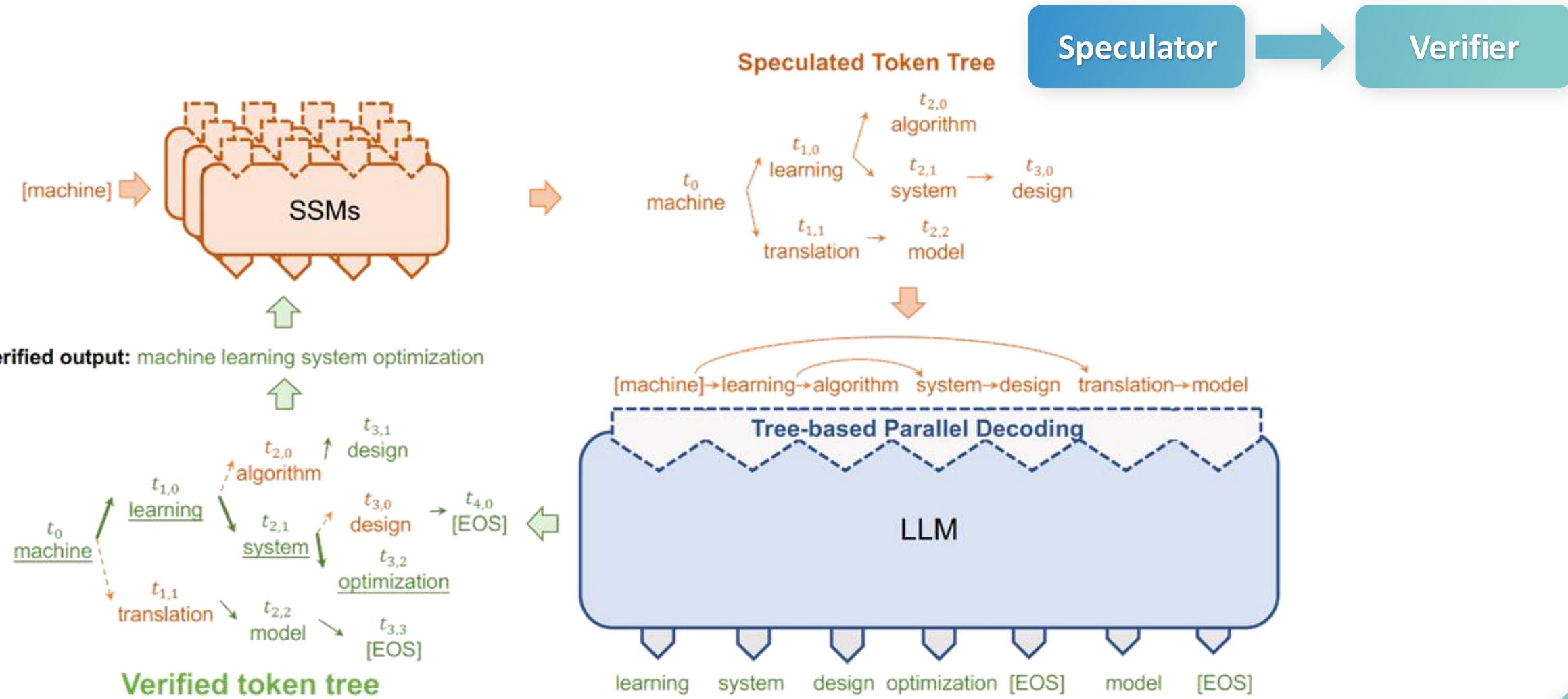


Key optimizations:

- A DFS-based approach to linearizing a token tree
- Tree topology-aware causal mask
- Decoding all tokens in a single GPU kernel



Verification Workflow



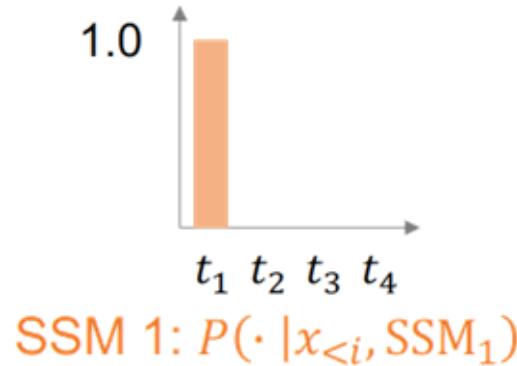
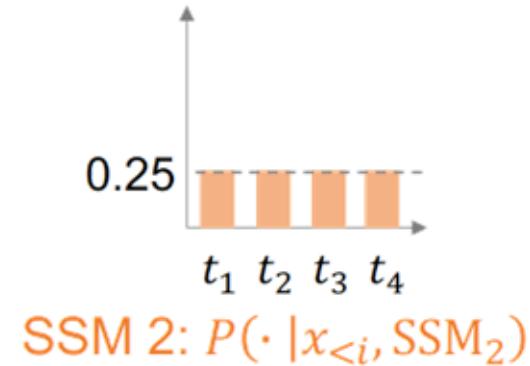
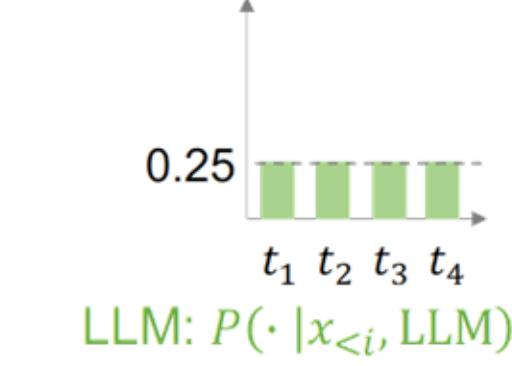
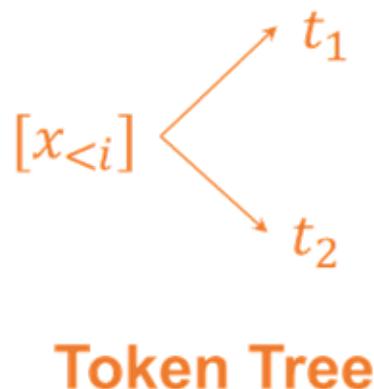
- **Challenge:** verifying stochastic equivalence

$$P_{\text{IncrDecode}}(\cdot | x_{<i}, \text{LLM}) = P_{\text{SpecInfer}}(\cdot | x_{<i}, \text{LLM}, \{\text{SSM}_i\})$$

- A strawman approach: **naïve sampling**
- Use LLM to sample $x_i \sim P_{\text{IncrDecode}}(\cdot | x_{<i}, \text{LLM})$
- Verify if x_i is in the token tree

Naïve Sampling can be Suboptimal

- Assume one LLM, two SSMs, and four possible tokens: t_1, t_2, t_3, t_4



Naïve sampling's verification prob. = **50%**

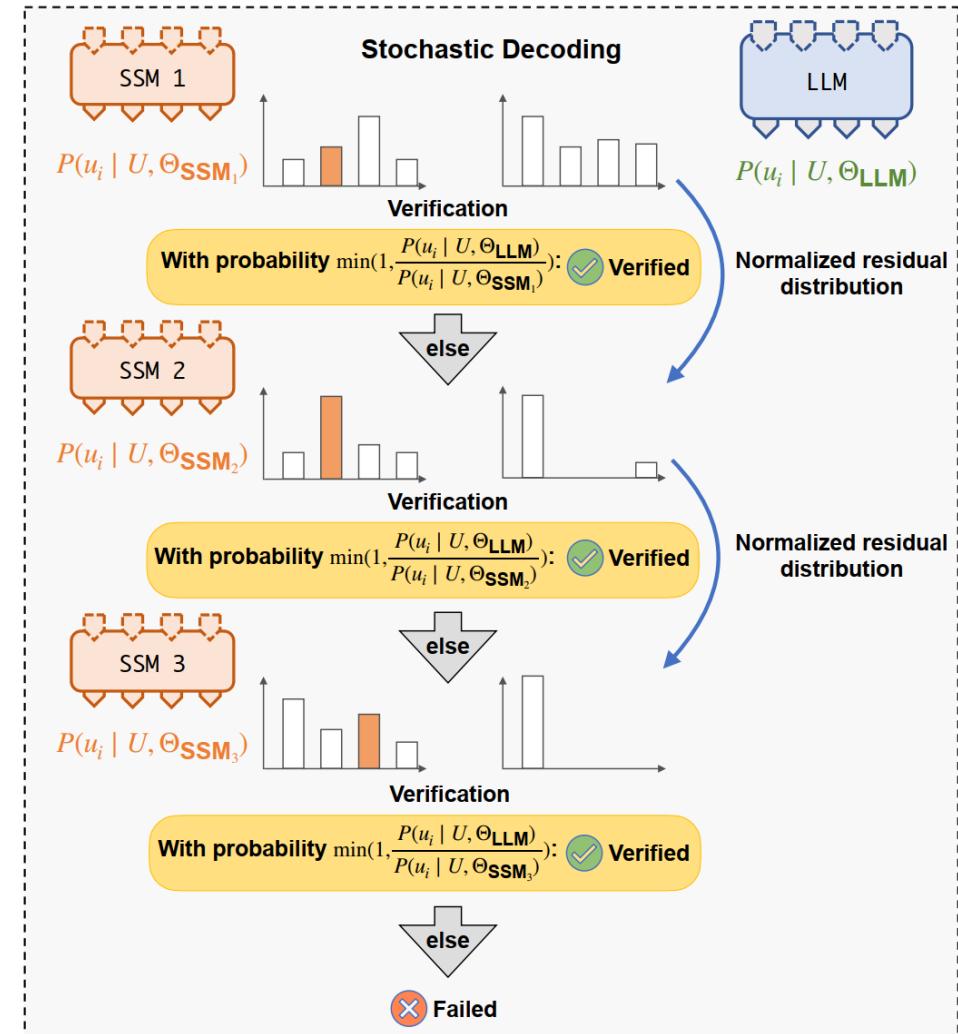
But we can do better by directly accepting SSM 2;
verification prob. = **100%**

Key issue: naïve sampling ignores correlation
between $P(\cdot | x_{<i}, \text{SSM})$ and $P(\cdot | x_{<i}, \text{LLM})$

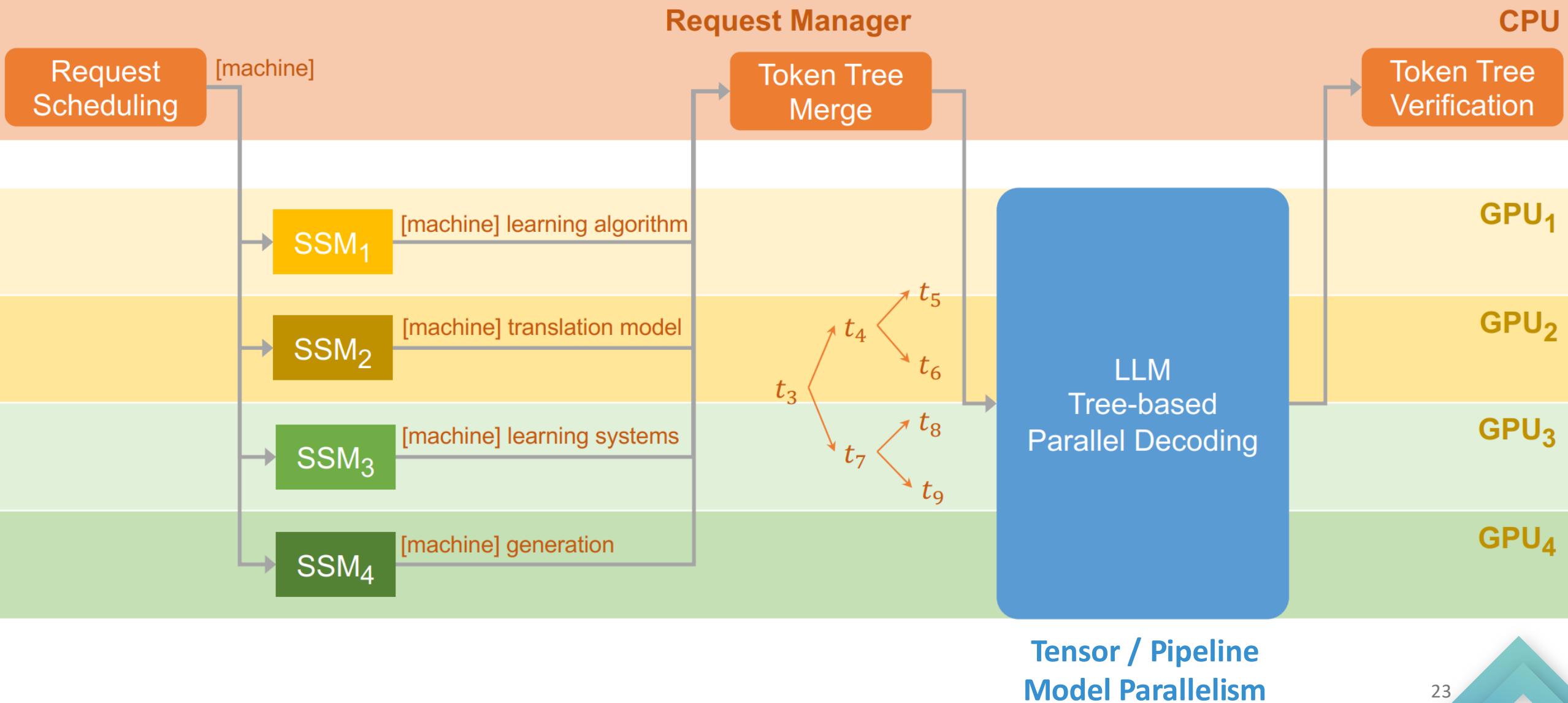
Speculative Sampling

1. Sample a token $x \sim P(u_i | U, \Theta_{SSM})$ using SSM
2. If $P(x | U, \Theta_{SSM}) \leq P(x | U, \Theta_{LLM})$, directly accept x
3. If $P(x | U, \Theta_{SSM}) > P(x | U, \Theta_{LLM})$, accept x with prob. $\frac{P(x | U, \Theta_{LLM})}{P(x | U, \Theta_{SSM})}$
4. If reject x , normalize residual distribution

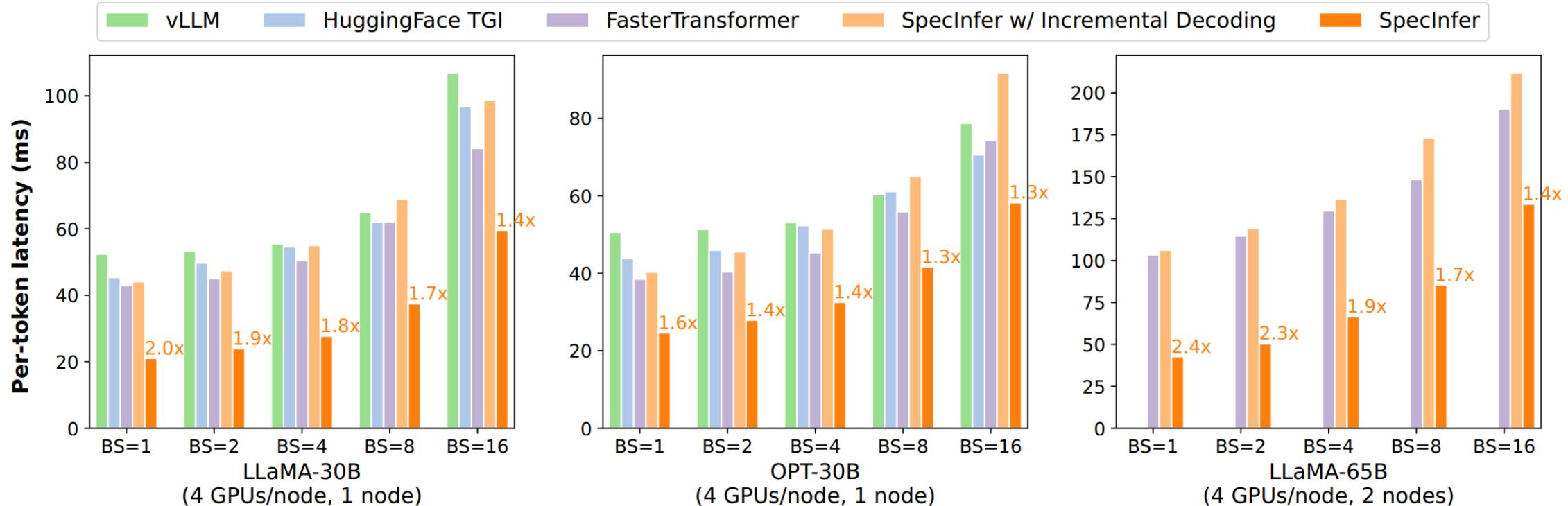
$$P'(x | U, \Theta_{LLM}) = \text{norm}(\max(0, P(x | U, \Theta_{LLM}) - P(x | U, \Theta_{SSM})))$$



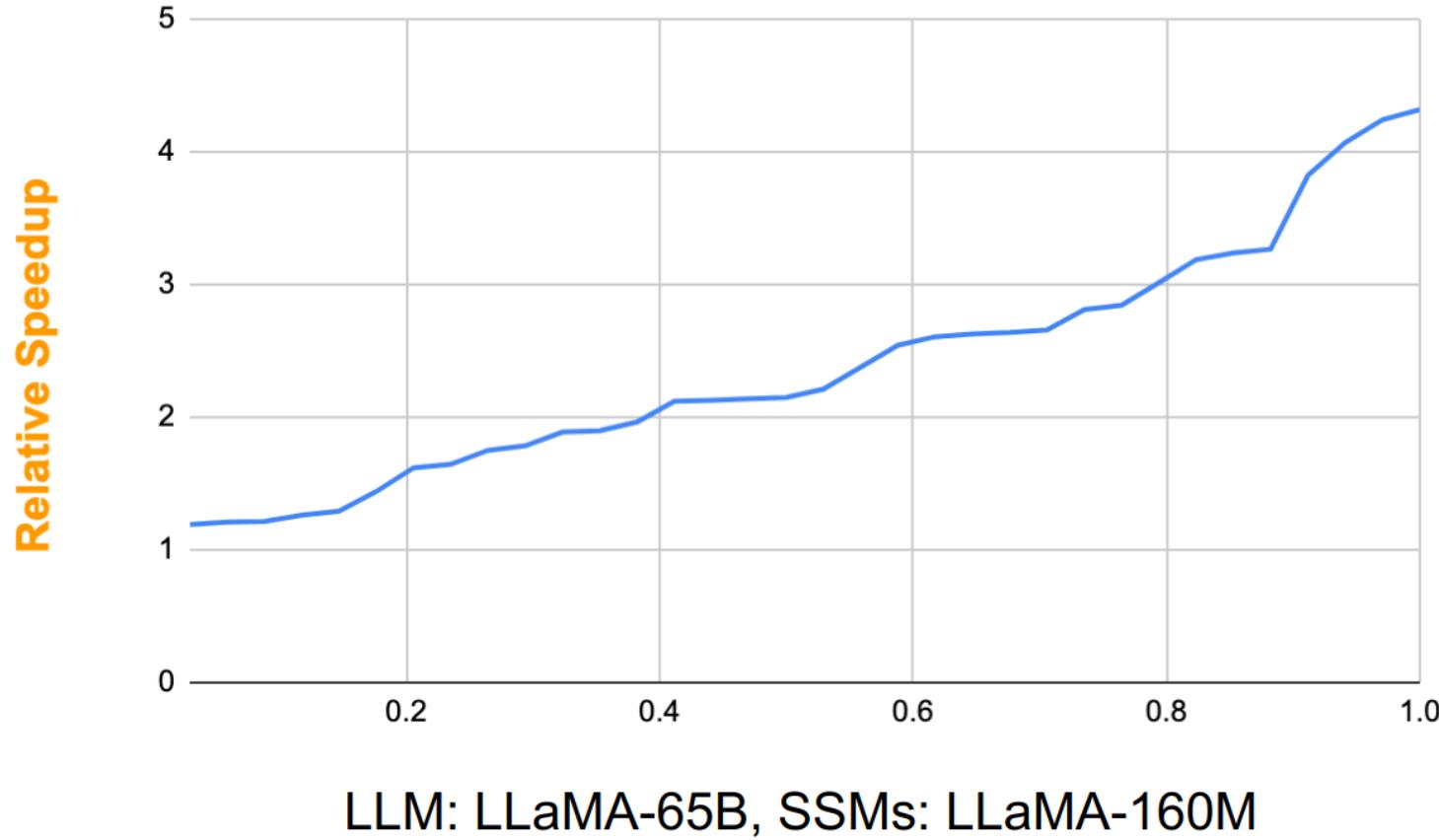
Distributed LLM Serving



SpecInfer Accelerates LLM Inference by 1.3-2.4x

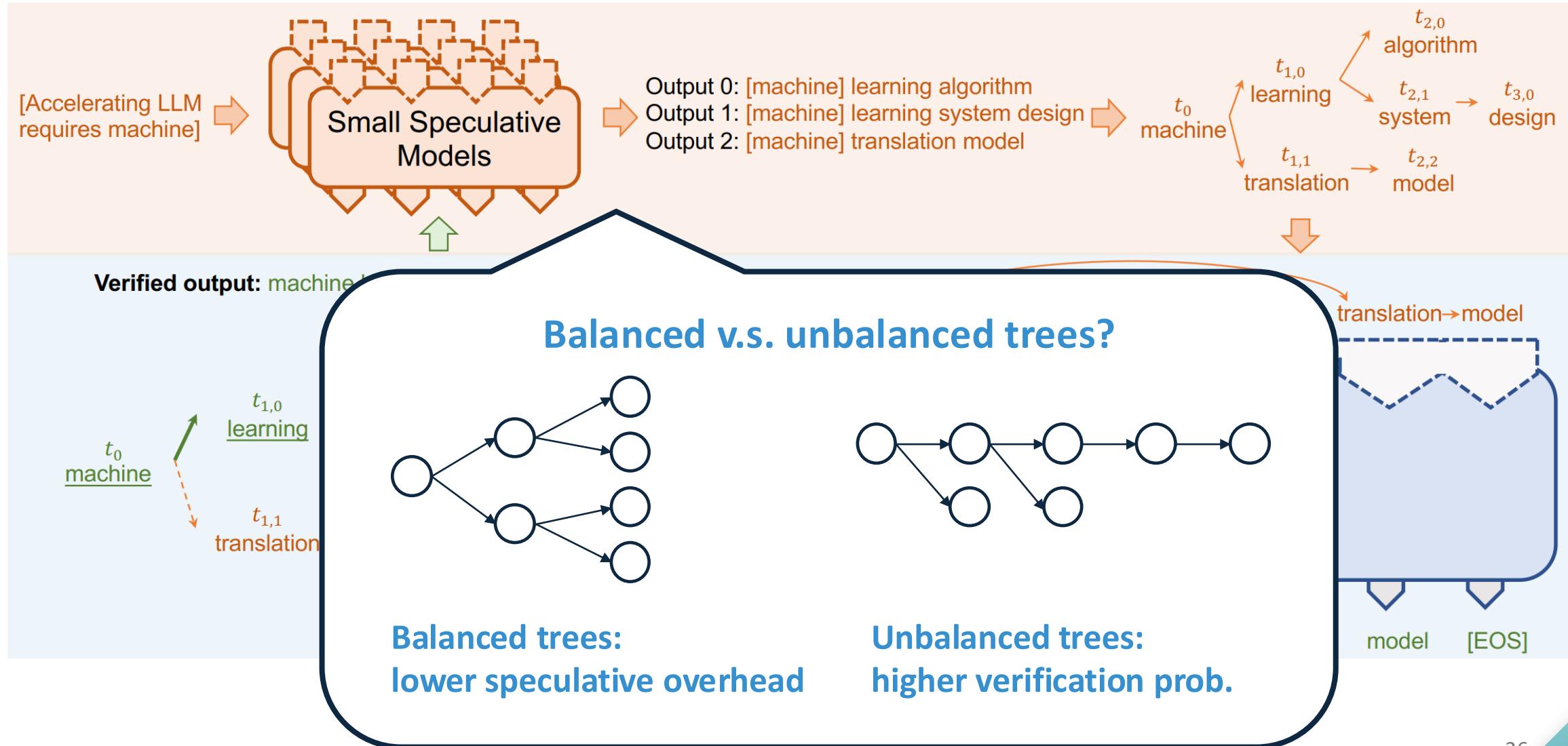


SpecInfer can Consistently Accelerate LLM Inference



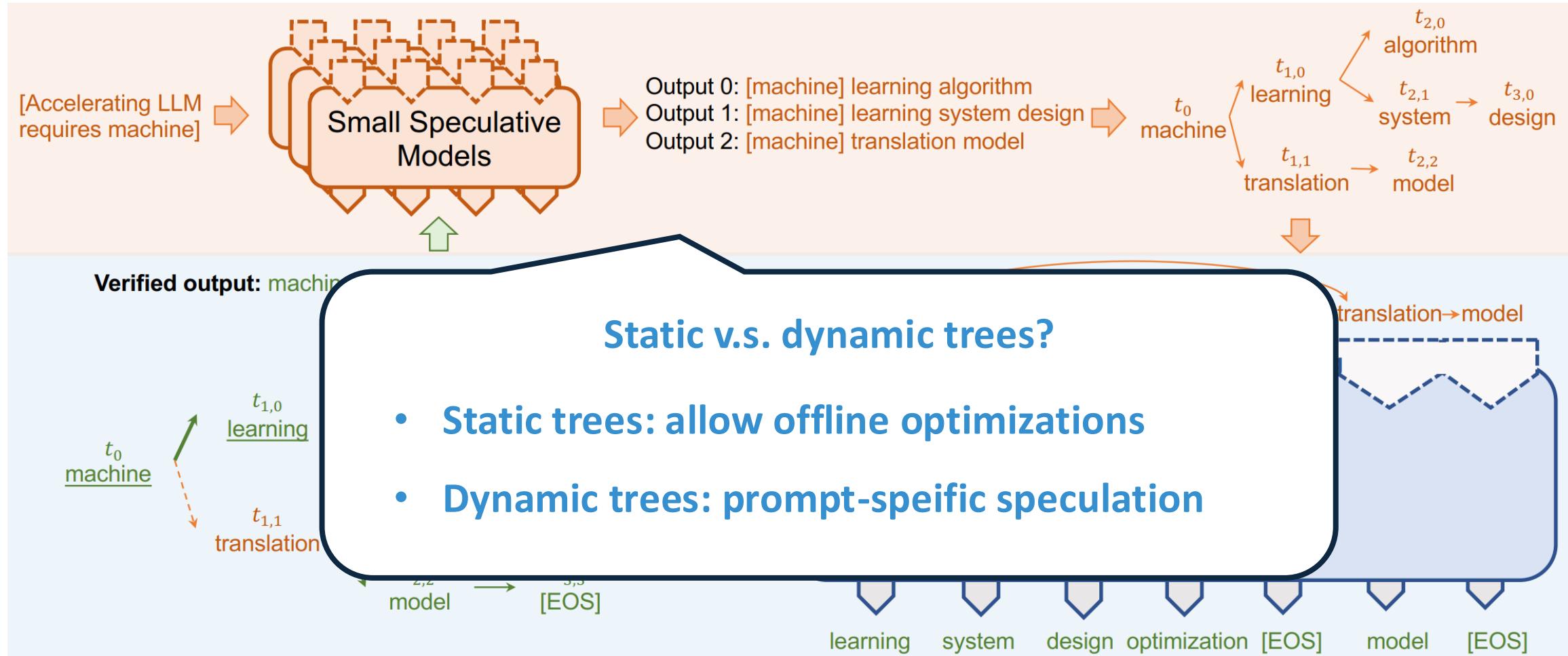
Open Research Questions

Speculator

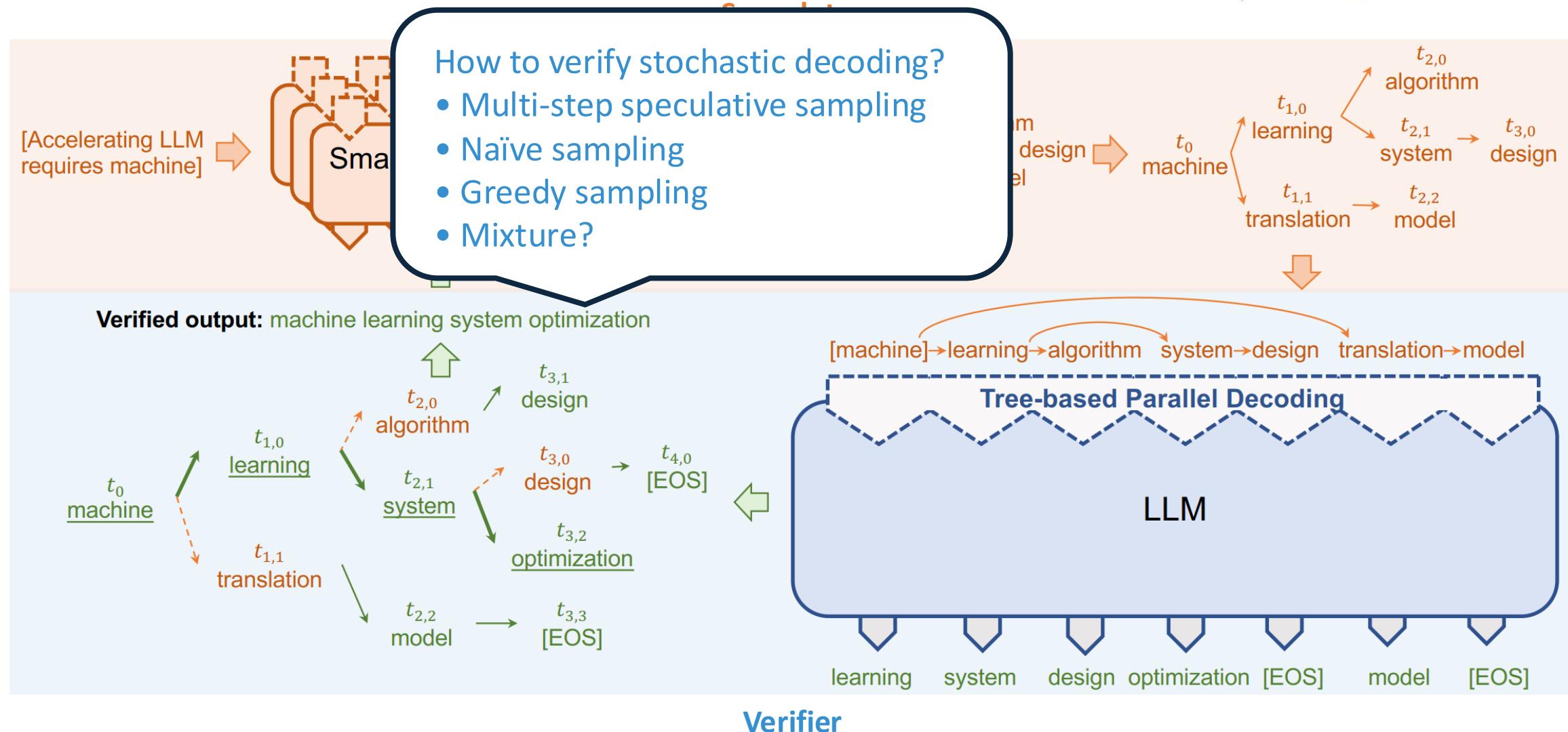


Open Research Questions

Speculator



Open Research Questions



Acknowledgement

The development of this course, including its structure, content, and accompanying presentation slides, has been significantly influenced and inspired by the excellent work of instructors and institutions who have shared their materials openly. We wish to extend our sincere acknowledgement and gratitude to the following courses, which served as invaluable references and a source of pedagogical inspiration:

- Machine Learning Systems[15-442/15-642], by **Tianqi Chen** and **Zhihao Jia** at **CMU**.
- Advanced Topics in Machine Learning (Systems)[CS6216], by **Yao Lu** at **NUS**

While these materials provided a foundational blueprint and a wealth of insightful examples, all content herein has been adapted, modified, and curated to meet the specific learning objectives of our curriculum. Any errors, omissions, or shortcomings found in these course materials are entirely our own responsibility. We are profoundly grateful for the contributions of the educators listed above, whose dedication to teaching and knowledge-sharing has made the creation of this course possible.

System for Artificial Intelligence

Thanks

Siyuan Feng
Shanghai Innovation Institute
