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* Limited degree of parallelism - underutilized GPU resources

* Need all parameters to decode a token - bottlenecked by GPU memory access

;
Measured by serving LLAMA-2-70B on 4 A100 GPUs with 4K sequence length ‘ \
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Tradeoffs between Different Language Models e
#Parameters (1758 |13B___[27B __|760M __|125M
TriviaQA 71.2 57.5 42.3 26.5 6.96
PIQA 82.3 79.9 75.4 72.0 64.3
SQuUAD 64.9 62.6 50.0 39.2 27.5
latency 20s 7.6s 2.7s 1.1s 0.3s
# A100s 10 1 1 1 1
Comparing multiple GPT-3 models*
Large models Small models
I" Pro: better generative performance I‘Pro: cheap and fast
|’ Con: slow and expensive to serve |’Con: less accurate

4
Language Models are Few-Shot Learners. Arix.2005.14165 A
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1. Use a small speculative model (SSM) to predict the LLM’s output
e SSM runs much faster than LLM

[Accelerating LLM

requires machine] > learning " systems
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1. Use a small speculative model (SSM) to predict the LLM’s output
e SSM runs much faster than LLM
2. Use the LLM to verify the SSM’s prediction

[Accelerating LLM

requires machine] > learnin > systems
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LLM is novel learning systems optimization principles
Speculation Verification
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Input Prompt [Accelerate LLM  requires machine ] learning systems design SSM Predictions
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U U U U U U
LLM Outputs: \,\F\\ o \@\‘e \6250‘0 : \55\6‘0 «\\7?“ (\OC\Q\Q

Generate 3 new tokens in one LLM decoding step
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Input Prompt [Accelerate LLM  requires machine ] learning systems design SSM Predictions
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Key takeaway: v Vv

* LLM inference is bottlenecked by accessing model weights

e using LLM to decode multiple tokens to improve GPU utilization .
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* Key idea: not use LLMs as incremental decoder, use them as parallel
token tree verifier

* Better performance: outperform existing LLM systems by 1.3-2.4x
* Higher efficiency: reduce GPU memory access by 2.5-4.4x

* Correctness: verification guarantees end-to-end equivalence

9
Speclner: Accelerating LLM Serving with Tree-based Speculative Inference and Verification. ASPLOS’ 24 l



Specinfer Workflow tif el 8 %R

Shanghai Innovation Institute

Speculator
rReNeRy =
l"'I-\ 'I-\l 'I-\l 1 algorithm
-‘-v.k BV Y ty,

(Accelerating LLM A Output 0: [machine] learning algorithm Iearlnc;ng tzr  _, t3o

erati ' .
. . Small S eculatl Output1 [machine] learning system design system  design

R P Output2 [machine] translation model E> machme
MOdels t11 2,2
translation model
Verified output: machine learning system optimization s
ﬁ [machine]—-learning—algorithm system—>design translation—>model
L T |
’ 1

tzo /' design /J\ . Tree-based Parallel Decodmg . !

tio ’/ﬂ algorithm , . \\"v’I’ \s~ ,l’ \”s ,f’ s\\ ,l' "’\.\ ’t \v’f’ \\.\”r’\
learning 3,0 4,0
to tz1 -7 design [EOS]
machine system \ , <:| LLM
\ 3,2
y l11 optimization
translation \

t22 t33 - J

model ~  [EOS] ¢ U U U U V

learning system design optimization [EOS] model [EOS]
Verifier




' Learning-based Speculator LiE 68 R

Shanghai Innovation Institute

Speculator ‘ Verifier

« Small speculative models SSM 0: [machine]—intelligence
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Collective Boost-Tuning
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‘ Verifier

LLM-generated tokens
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LLM:

Collective Boost-Tuning Consistently Improves Performance

= 1SSM = 2S8SMs -~ 4 SSMs

Relative Speedup
w

CDF

LLAMA-7B, SSM: LLAMA-160M, dataset: Alpaca, GPU: NVIDIA A10

1.00
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* A compact way to represent speculated tokens 4 Verifier

2,0
tio algorithm
_ _ . learning ty1 tso
SSM 0: [machine] learning algorithm Tree to System_) design
SSM 1: [machine] learning system design ‘ M » machine t t
SSM 2: [machine] translation model erge translljétion — mgéel
Token Sequences Token Tree
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‘ Verifier
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Issues:

* Redundant decoding computation
* More requests - more GPU memory for key/value cache A
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* same output as sequence attention for each [EElbi s mm) |
token; no redundancy

Token Sequences

[machine] learning algorithm )

Attentlon( [machine] learning system design
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' Tree-based Parallel Decoding
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KV-cache

Topology-aware

causal mask

Key optimizations:

‘ Verifier
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* A DFS-based approach to linearizing a token tree
* Tree topology-aware causal mask

* Decoding all tokens in a single GPU kernel
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* Challenge: verifying stochastic equivalence

Pincrbecode (* X<, LLM) = PSpecInfer(' |x<i, LLM, {SSMi})

e A strawman approach: naive sampling
* Use LLM to sample X;i~Pincrpecode (* [X<i LLM)

* Verify if x; is in the token tree

20
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* Assume one LLM, two SSMs, and four possible tokens: t1, t,, t3, t4

1.0 I t

| el 1 01 N ol 1 0 1 N
tl tz tg tq, tl tz tg t4 tl tZ tS t4
SSM 1: P(- |x<;, SSM;) SSM 2: P(- |x<;, SSM,) LLM: P(- [x<;, LLM)
t Naive sampling’s verification prob. = 50%
1
(xXi] But we can do better by directly accepting SSM 2;
AL e s B
t verification prob. = 100%
2

Key issue: nalve sampling ignores correlation
Token Tree between P(: |x.;, SSM) and P(: |x.;, LLM)
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SpeCUIative Sampling ’ SJ:hamZEi I?rljov:;%zn ?stitEJE

1. Samp|e 9 token x~P(ul|U, @SSM) ; E'-.ﬁw;'*:l"—';j Stochastic Decoding b » v :
using SSM ‘HDHH Hﬂﬂﬂ P(; | U.OLLW)

Verification

2. If P(x|U,Og5p) < P(x|U,O11n), With probabiy mil 0L "GP @ Verited ”°"2?s'if?b“utr?5.i"”a'é
directly accept x E'-LLuJ S |

3. If P(x|U,Ogsp) > P(x|U,0OpLp), o \H .

P (Xl U,@LLM) : Verification

1
- . 1
Normalized residual

accept x with prob. P10 Oeen) (o ey o ||_ vt | Mormatas e
4. If reject x, normalize residual C;;]
distribution mﬂﬂﬂ -
P'(x|U,0p.p) = g With probably i (1%) @ veritiea
norm(max(0, P(x|U, O ) — P(x|U, Ogsp)))
) Faited

Details in Specinfer: Accelerating Large Language Model Serving with Tree-based Speculative Inference and Verification. ASPLOS'24



Distributed LLM Serving

Request Manager

GV A [machine]
Scheduling

m [machine] learning algorithm

Token Tree
Merge

m [machine] translation model

m [machine] learning systems
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LLM
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Tensor / Pipeline
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Specinfer Accelerates LLM Inference by 1.3-2.4x
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B Specinfer
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LLaMA-65B

(4 GPUs/node, 2 nodes)




' Specinfer can Consistently Accelerate LLM Inference ¢* £ 3 8 8 = B
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Relative Speedup

0.2 0.4 0.6 0.8 1.0

LLM: LLaMA-65B, SSMs: LLaMA-160M
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Open Research Questions
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