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Different Co-located Model Placement
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1. Utilize GPU in every timestamp
2. Enable flexible parallelism between training and rollout

Sheng, Guangming, et al. "Hybridflow: A flexible and efficient rlhf framework." Proceedings
of the Twentieth European Conference on Computer Systems. 2025.
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(b) Optimized parallel grouping methods (HybridFlow)

Sheng, Guangming, et al. "Hybridflow: A flexible and efficient rlhf framework." Proceedings
of the Twentieth European Conference on Computer Systems. 2025.
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Fu, Wei, et al. "AReal: A Large-Scale Asynchronous Reinforcement Learning System for
Language Reasoning." arXiv preprint arXiv:2505.24298 (2025).
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Language Reasoning." arXiv preprint arXiv:2505.24298 (2025).
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* Different parallelism world size for training and rollout
* Heterogeneous compute

* Long, variable-length rollout trajectories
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Fu, Wei, et al. "AReal: A Large-Scale Asynchronous Reinforcement Learning System for
Language Reasoning." arXiv preprint arXiv:2505.24298 (2025).
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Zhong, Yinmin, et al. "StreamRL: Scalable, Heterogeneous, and Elastic RL for LLMs with
Disaggregated Stream Generation." arXiv preprint arXiv:2504.15930 (2025).
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